瞬时变化率的实际意义思考1:若S(t)为位移.按照上面办法求得的瞬时变化率有什么实际意义? 查看更多

 

题目列表(包括答案和解析)

已知命题p:y=(a-1)x+1是增函数,命题q:函数y=log2(a+2)有意义
(1)若命题p为真命题,求实数a的取值范围;
(2)若“p且q”为真命题,求实数a的取值范围.

查看答案和解析>>

(理)数列{an},若对任意的k∈N*,满足
a2k+1
a2k-1
=q1
a2k+2
a2k
=q2
 &(q1q2
是常数且不相等),则称数列{an}为“跳跃等比数列”,则下列关于“跳跃等比数列”的命题:
(1)若数列{an}为“跳跃等比数列”,则满足bk=a2k•a2k-1(k∈N*)的数列{bn}是等比数列; 
(2)若数列{an}为“跳跃等比数列”,则满足bk=
a2k
a2k-1
(k∈N*)
的数列{bn}是等比数列; 
(3)若数列{an}为等比数列,则数列{(-1)nan}是“跳跃等比数列”;  
(4)若数列{an}为等比数列,则满足bn=
ak+1ak
,&n=2k-1
ak+1
ak
,&n=2k
(k∈N*)
的数列{bn}是“跳跃等比数列”;
(5)若数列{an}和{bn}都是“跳跃等比数列”,则数列{an•bn}也是“跳跃等比数列”;其中正确的命题个数为(  )

查看答案和解析>>

设命题P:函数y=xc-1在(0,+∞)上为减函数,命题Q:y=ln(2cx2+2x+1)的值域为R,命题T:函数y=ln(2cx2+2x+1)定义域为R,
(1)若命题T为真命题,求c的取值范围.
(2)若P或Q为真命题,P且Q为假命题,求c的取值范围.

查看答案和解析>>

(1)已知命题p:2x2-3x+1≤0和命题q:x2-(2a+1)x+a(a+1)≤0,若¬p是¬q的必要不充分条件,求实数a的取值范围.
(2)已知命题s:方程x2+(m-3)x+m=0的一根在(0,1)内,另一根在(2,3)内.命题t:函数f(x)=ln(mx2-2x+1)的定义域为全体实数.若s∨t为真命题,求实数m的取值范围.

查看答案和解析>>

(2013•文昌模拟)选修4-4:坐标系与参数方程
已知曲线C的极坐标方程是ρ=1,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程
x=1+
t
2
y=2+
3
2
t
(t为参数)

(1)写出直线l的普通方程与曲线C的直角坐标方程;
(2)设曲线C经过伸缩变换
x′=3x
y′=y
得到曲线C′,设曲线C′上任一点为M(x,y),求x+2
3
y
的最小值.

查看答案和解析>>


同步练习册答案