解:(1)→f/(1)=1 查看更多

 

题目列表(包括答案和解析)

解:因为有负根,所以在y轴左侧有交点,因此

解:因为函数没有零点,所以方程无根,则函数y=x+|x-c|与y=2没有交点,由图可知c>2


 13.证明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0

若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)与已知条件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函数y=f(x)-1的零点

(2)因为f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,则f(-1)=f(1)与已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函数是奇函数

数字1,2,3,4恰好排成一排,如果数字i(i=1,2,3,4)恰好出现在第i个位置上则称有一个巧合,求巧合数的分布列。

查看答案和解析>>

解::因为,所以f(1)f(2)<0,因此f(x)在区间(1,2)上存在零点,又因为y=与y=-在(0,+)上都是增函数,因此在(0,+)上是增函数,所以零点个数只有一个方法2:把函数的零点个数个数问题转化为判断方程解的个数问题,近而转化成判断交点个数问题,在坐标系中画出图形


由图看出显然一个交点,因此函数的零点个数只有一个

袋中有50个大小相同的号牌,其中标着0号的有5个,标着n号的有n个(n=1,2,…9),现从袋中任取一球,求所取号码的分布列,以及取得号码为偶数的概率.

查看答案和解析>>

1已知函数f(x)=ax+b
1+x2
(x≥0)
g(x)=2
b(1+x2)
,a,b∈R,且g(0)=2,f(
3
)=2-
3

(Ⅰ)求f(x)、g(x)的解析式;
(Ⅱ)h(x)为定义在R上的奇函数,且满足下列性质:①h(x+2)=-h(x)对一切实数x恒成立;②当0≤x≤1时h(x)=
1
2
[-f(x)+log2g(x)]

(ⅰ)求当-1≤x<3时,函数h(x)的解析式;
(ⅱ)求方程h(x)=-
1
2
在区间[0,2012]上的解的个数.

查看答案和解析>>

f(x)=x2-4x-4,x∈[t,t+1],t∈R,求:

(1)f(x)的最小值g(t)的解析式;

(2)求g(t)的最小值.

查看答案和解析>>

19C.解:由,所以,所以,因为f(x)=x,所以解得x=-1或-2或2,所以选C

调查某医院某段时间内婴儿出生时间与性别的关系,得到以下数据。

晚上

白天

合计

男婴

24

31

55

女婴

8

26

34

合计

32

57

89

试问有多大把握认为婴儿的性别与出生时间有关系?

查看答案和解析>>


同步练习册答案