设函数y=f(x)在点x处可导.a.b为常数.当△x→0时→ 查看更多

 

题目列表(包括答案和解析)

函数y=f(x)在区间(0,+∞)内可导,导函数f′(x)是减函数,且f′(x)>0,设x0∈(0,+∞),y=kx+m是曲线y=f(x)在点(x0,f(x0))处的切线方程,并设函数g(x)=kx+m.

(1)用x0f(x0)、f′(x0)表示m;

(2)证明当x0∈(0,+∞)时,g(x)≥f(x);

(3)若关于x的不等式x2+1≥ax+b上恒成立,其中a、b为实数,求b的取值范围及a与b 所满足的关系.

查看答案和解析>>

设f(x)为可导函数,且满足条件
lim
x→0
f(x+1)-f(1)
2x
=3
,则曲线y=f(x)在点(1,f(1))处的切线的斜率为(  )
A、
3
2
B、3
C、6
D、无法确定

查看答案和解析>>


同步练习册答案