题目列表(包括答案和解析)
A.(S∩T)∪(P∩Q) B.(S∩T)∩(P∩Q)
C.(S∪T)∪(P∪Q) D.(S∪T)∩(P∪Q)
解不等式:
【解析】本试题主要是考查了分段函数与绝对值不等式的综合运用。利用零点分段论 的思想,分为三种情况韬略得到解集即可。也可以利用分段函数图像来解得。
解:方法一:零点分段讨论: 方法二:数形结合法:
x |
x+h |
a |
b |
ah |
b-a |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
x |
h |
y-a |
b-a |
b-a |
h |
∫ | h 0 |
b-a |
h |
b-a |
2h |
| | h 0 |
b-a |
2h |
1 |
2 |
1 |
3 |
求圆心在直线y=-2x上,并且经过点A(2,-1),与直线x+y=1相切的圆的方程.
【解析】利用圆心和半径表示圆的方程,首先
设圆心为S,则KSA=1,∴SA的方程为:y+1=x-2,即y=x-3, ………4分
和y=-2x联立解得x=1,y=-2,即圆心(1,-2)
∴r==,
故所求圆的方程为:+=2
解:法一:
设圆心为S,则KSA=1,∴SA的方程为:y+1=x-2,即y=x-3, ………4分
和y=-2x联立解得x=1,y=-2,即圆心(1,-2) ……………………8分
∴r==, ………………………10分
故所求圆的方程为:+=2 ………………………12分
法二:由条件设所求圆的方程为:+=
, ………………………6分
解得a=1,b=-2, =2 ………………………10分
所求圆的方程为:+=2 ………………………12分
其它方法相应给分
lim |
△t→0 |
△s |
△t |
A、从时间t到t+△t时,物体的平均速度 |
B、时间t时该物体的瞬时速度 |
C、当时间为△t时该物体的速度 |
D、从时间t到t+△t时位移的平均变化率 |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com