f极小=-2,f极大的图象大致为 查看更多

 

题目列表(包括答案和解析)

有一段“三段论”推理是这样的:“对于可导函数f(x),如果f′(x0)=0,那么x=x0是函数f(x)的极值点;因为函数f(x)=x3在x=0处的导数值f′(0)=0,所以x=0是函数f(x)=x3的极值点.”以上推理中
(1)大前提错误
(2)小前提错误
(3)推理形式正确
(4)结论正确
你认为正确的序号为
 

查看答案和解析>>

已知函数f(x)=ax--3ln x,其中a为常数.

(1)当函数f(x)的图象在点处的切线的斜率为1,求函数f(x)上的最小值;

(2)若函数f(x)在区间(0,+)上既有极大值又有极小值,a的取值范围;

(3)(1)的条件下,过点P(1,-4)作函数F(x)=x2[f(x)+3lnx-3]图象的切线,试问这样的切线有几条?并求出这些切线方程.

 

查看答案和解析>>

已知函数f(x)=ax--3ln x,其中a为常数.
(1)当函数f(x)的图象在点处的切线的斜率为1时,求函数f(x)在上的最小值;
(2)若函数f(x)在区间(0,+∞)上既有极大值又有极小值,求a的取值范围;
(3)在(1)的条件下,过点P(1,-4)作函数F(x)=x2[f(x)+3lnx-3]图象的切线,试问这样的切线有几条?并求出这些切线方程.

查看答案和解析>>

已知函数f(x)=ax--3ln x,其中a为常数.
(1)当函数f(x)的图象在点处的切线的斜率为1时,求函数f(x)在上的最小值;
(2)若函数f(x)在区间(0,+∞)上既有极大值又有极小值,求a的取值范围;
(3)在(1)的条件下,过点P(1,-4)作函数F(x)=x2[f(x)+3lnx-3]图象的切线,试问这样的切线有几条?并求出这些切线方程.

查看答案和解析>>


同步练习册答案