图中与是极小值.是极大值.函数在上的最大值是.最小值是.思考:最值如何求?(一般根据图象和单调性.单调性与导数与极值相联系.所以可以用导数求函数的最值)引入标题:导数法求函数的最值 查看更多

 

题目列表(包括答案和解析)

12、已知函数f(x)是定义在R上的函数,如果函数f(x)在R上的导函数f′(x)的图象如图,则有以下几个命题:
(1)f(x)的单调递减区间是(-2,0)、(2,+∞),f(x)的单调递增区间是(-∞,-2)、(0,2);
(2)f(x)只在x=-2处取得极大值;
(3)f(x)在x=-2与x=2处取得极大值;
(4)f(x)在x=0处取得极小值.
其中正确命题的个数为(  )

查看答案和解析>>

已知函数f(x)的定义域为[-1,5],部分对应值如下表.
x -1 0 2 4 5
f(x) 1 2 0 2 1
f(x)的导函数y=f′(x)的图象如图所示.下列关于函数f(x)的命题:
①函数f(x)在[0,1]上是减函数;
②如果当x∈[-1,t]时,f(x)最大值是2,那么t的最大值为4;
③函数y=f(x)-a有4个零点,则1≤a<2;
④若f(x)在[-1,5]上的极小值为-2,且 y=t与f(x)有两个交点,则-2<t<1.
其中真命题的个数是(  )

查看答案和解析>>

已知函数f(x)=x3+ax2+bx+c(x∈[-2,2])的图象过原点,且在x=±1处的切线的倾斜角均为
4
,现有以下三个命题:
①f(x)=x3-4x(x∈[-2,2]);
②f(x)的极值点有且只有一个;          
③f(x)的最大值与最小值之和为零.
其中真命题的序号是
①③
①③

查看答案和解析>>

已知函数f(x)是定义在R上的函数,如果函数f(x)在R上的导函数f′(x)的图象如图,则有以下几个命题:

(1)f(x)的单调递减区间是(-2,0)、(2,+∞),f(x)的单调递增区间是(-∞,-2)、(0,2);
(2)f(x)只在x=-2处取得极大值;
(3)f(x)在x=-2与x=2处取得极大值;
(4)f(x)在x=0处取得极小值.
其中正确命题的个数为                                                               (  )

A.1B.2
C.3D.4

查看答案和解析>>

已知函数f(x)=x3+ax2+bx+c(x∈[-2,2])的图象过原点,且在x=±1处的切线的倾斜角均为,现有以下三个命题:
①f(x)=x3-4x(x∈[-2,2]);
②f(x)的极值点有且只有一个;          
③f(x)的最大值与最小值之和为零.
其中真命题的序号是   

查看答案和解析>>


同步练习册答案