练习1:上面条件不变.求在h→0时的极限值 查看更多

 

题目列表(包括答案和解析)

在平面直角坐标系xOy中,已知⊙C1:(x+3)2+(y-1)2=4和⊙C2:(x-5)2+(y-1)2=4
(1)若直线l过点O(0,0),且被⊙C1截得的弦长为2
3
,求直线l的方程;
(2)设P为平面上的点,满足:过点P的任意互相垂直的直线l1和l2,只要l1和l2与⊙C1和⊙C2分别相交,必有直线l1被⊙C1截得的弦长与直线l2被⊙C2截得的弦长相等,试求所有满足条件的点P的坐标;
(3)将(2)的直线l1和l2互相垂直改为直线l1和l2所成的角为60°,其余条件不变,直接写出所有这样的点P的坐标.(直线与直线所成的角与两条异面直线所成的角类似,只取较小的角度.)

查看答案和解析>>

如图1,在△ABC中,点P为BC边中点,直线a绕顶点A旋转,若点B,P在直线a的异侧,BM⊥直线a于点M.CN⊥直线a于点N,连接PM,PN.

(1)延长MP交CN于点E(如图2).

①求证:△BPM≌△CPE;

②求证:PM=PN;

(2)若直线a绕点A旋转到图3的位置时,点B,P在直线a的同侧,其它条件不变,此时PM=PN还成立吗?若成立,请给予证明;若不成立,请说明理由;

(3)若直线a绕点A旋转到与BC边平行的位置时,其它条件不变,请直接判断四边形MBCN的形状及此时PM=PN还成立吗?不必说明理由.

 

查看答案和解析>>

(1)如图2-28,已知直线AB过圆心O,交⊙O于A、B,直线AF交⊙O于F(不与B重合),直线l交⊙O于C、D,交AB于E,且与AF垂直,垂足为G,连结AC、AD.

求证:①∠BAD=∠CAG;

②AC·AD=AE·AF.

(2)在问题(1)中,当直线l向上平行移动,与⊙O相切时,其他条件不变.

①请你画出变化后的图形,并对照图2-28标记字母;②问题(1)中的两个结论是否成立?如果成立,请证明;如果不成立,请说明理由.

图2-28

查看答案和解析>>

在平面直角坐标系xOy中,已知⊙C1:(x+3)2+(y-1)2=4和⊙C2:(x-5)2+(y-1)2=4
(1)若直线l过点O(0,0),且被⊙C1截得的弦长为,求直线l的方程;
(2)设P为平面上的点,满足:过点P的任意互相垂直的直线l1和l2,只要l1和l2与⊙C1和⊙C2分别相交,必有直线l1被⊙C1截得的弦长与直线l2被⊙C2截得的弦长相等,试求所有满足条件的点P的坐标;
(3)将(2)的直线l1和l2互相垂直改为直线l1和l2所成的角为60°,其余条件不变,直接写出所有这样的点P的坐标.(直线与直线所成的角与两条异面直线所成的角类似,只取较小的角度.)

查看答案和解析>>

在平面直角坐标系xOy中,已知⊙C1:(x+3)2+(y-1)2=4和⊙C2:(x-5)2+(y-1)2=4
(1)若直线l过点O(0,0),且被⊙C1截得的弦长为,求直线l的方程;
(2)设P为平面上的点,满足:过点P的任意互相垂直的直线l1和l2,只要l1和l2与⊙C1和⊙C2分别相交,必有直线l1被⊙C1截得的弦长与直线l2被⊙C2截得的弦长相等,试求所有满足条件的点P的坐标;
(3)将(2)的直线l1和l2互相垂直改为直线l1和l2所成的角为60°,其余条件不变,直接写出所有这样的点P的坐标.(直线与直线所成的角与两条异面直线所成的角类似,只取较小的角度.)

查看答案和解析>>


同步练习册答案