此时方程为x2+2x=3.它的根为x1=-3.x2=1.----------5分 查看更多

 

题目列表(包括答案和解析)

我们已学会了用“两边夹”的方法,根据不同的精确度要求,估算的取值范围,我们还可以用“逼近”的方法,求出它的近似值.

x
1.40
1.41
1.42
1.43

x2
1.96
1.9881
2.0164
2.0449

2-1.9881=0.0119,2.0164-2=0.0164,0.0119<0.0164
可见1.9881比2.0164更逼近2,当精确度为0.01时,的近似值为1.41.
下面,我们用同样的方法估计方程x2+2x=6其中一个解的近似值.
x
1.63
1.64
1.65
1.66

x2+2x
5.9169
5.9696
6.0225
6.0756

根据上表,方程x2+2x=6的一个解约是______________.(精确到0.01)

查看答案和解析>>

以x为自变量的二次函数y=-x2+2x+m,它的图象与y轴交于点C(0,3),与x轴交于点A、B,精英家教网点A在点B的左边,点O为坐标原点,
(1)求这个二次函数的解析式及点A,点B的坐标,画出二次函数的图象;
(2)在x轴上是否存在点Q,在位于x轴上方部分的抛物线上是否存在点P,使得以A,P,Q三点为顶点的三角形与△AOC相似(不包含全等)?若存在,请求出点P,点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

先阅读下列解题过程,然后解答问题(1)、(2)、(3).
例:解绝对值方程:|2x|=1.
解:讨论:①当x≥0时,原方程可化为2x=1,它的解是x=
1
2

②当x<0时,原方程可化为-2x=1,它的解是x=-
1
2

∴原方程的解为x=
1
2
和-
1
2

问题(1):依例题的解法,方程|
1
2
x|
=3的解是
x=6和-6
x=6和-6

问题(2):尝试解绝对值方程:2|x-2|=6;
问题(3):在理解绝对值方程解法的基础上,解方程:|x-2|+|x-1|=3.

查看答案和解析>>

(2002•浙江)以x为自变量的二次函数y=-x2+2x+m,它的图象与y轴交于点C(0,3),与x轴交于点A、B,点A在点B的左边,点O为坐标原点,
(1)求这个二次函数的解析式及点A,点B的坐标,画出二次函数的图象;
(2)在x轴上是否存在点Q,在位于x轴上方部分的抛物线上是否存在点P,使得以A,P,Q三点为顶点的三角形与△AOC相似(不包含全等)?若存在,请求出点P,点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

以x为自变量的二次函数y=-x2+2x+m,它的图象与y轴交于点C(0,3),与x轴交于点A、B,点A在点B的左边,点O为坐标原点,
(1)求这个二次函数的解析式及点A,点B的坐标,画出二次函数的图象;
(2)在x轴上是否存在点Q,在位于x轴上方部分的抛物线上是否存在点P,使得以A,P,Q三点为顶点的三角形与△AOC相似(不包含全等)?若存在,请求出点P,点Q的坐标;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案