(2) ∵AB=2.顶点C的纵坐标为.-----------------3分 查看更多

 

题目列表(包括答案和解析)

如图,在直角坐标系中,点A、B的坐标分别为(-3,0)、(0,3).

(1)一次函数图像上的两点P、0在直线AB的同侧,且直线PQ与y轴交点的纵坐标大于3,若△PAB与△QAB的面积都等于3,求这个一次函数的解析式;

(2)二次函数的图像经过点A、B,其顶点C在x轴的上方且在直线PQ上,求这个二次函数的解析式;

(3)若使(2)中所确定的抛物线的开口方向不变,顶点C在直线PQ上运动,当点C运动到点时,抛物线在x轴上截得的线段长为6,求点的坐标.

查看答案和解析>>

如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以毎秒1个单位长精英家教网的速度运动t秒(t>0),抛物线y=x2+bx+c经过点O和点P,已知矩形ABCD的三个顶点为 A (1,0),B (1,-5),D (4,0).
(1)求c,b (用含t的代数式表示):
(2)当4<t<5时,设抛物线分别与线段AB,CD交于点M,N.
①在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;
②求△MPN的面积S与t的函数关系式,并求t为何值时,S=
218

(3)在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接写出t的取值范围.

查看答案和解析>>

如图,在平面直角坐标系中,矩形OABC的顶点A在y轴正半轴上,点B的横、纵坐标分别是一元二次方程x2+5x-24=0的两个实数根,点D是AB的中点.
(1)求点B坐标;
(2)求直线OD的函数表达式;
(3)点P是直线OD上的一个动点,当以P、A、D三点为顶点的三角形是等腰三角形时,请直接写出P点的坐标.

查看答案和解析>>

如图,在平面直角坐标系中,直线y=-2x+42交x轴于点A,交直线y=x于点B,抛物线y=ax2-2x+c分别交线段AB、OB于点C、D,点C和点D的横坐标分别为16和4,点P在这条抛物线上.
(1)求点C、D的纵坐标.
(2)求a、c的值.
(3)若Q为线段OB上一点,P、Q两点的纵坐标都为5,求线段PQ的长.
(4)若Q为线段OB或线段AB上一点,PQ⊥x轴,设P、Q两点间的距离为d(d>0),点Q的横坐标为m,直接写出d随m的增大而减小时m的取值范围.[参考公式:二次函数y=ax2+bx+c(a≠0)图象的顶点坐标为(-数学公式数学公式)].

查看答案和解析>>

如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以毎秒1个单位长作业宝的速度运动t秒(t>0),抛物线y=x2+bx+c经过点O和点P,已知矩形ABCD的三个顶点为 A (1,0),B (1,-5),D (4,0).
(1)求c,b (用含t的代数式表示):
(2)当4<t<5时,设抛物线分别与线段AB,CD交于点M,N.
①在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;
②求△MPN的面积S与t的函数关系式,并求t为何值时,数学公式
(3)在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接写出t的取值范围.

查看答案和解析>>


同步练习册答案