所以当时..即.-------12 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)正在执行护航任务的某导弹护卫舰,突然收到一艘商船的求救信号,紧急前往相关海域.如图所示,到达相关海域处后发现,在南偏西、5海里外的洋面M处有一条海盗船,它正以每小时20海里的速度向南偏东的方向逃窜.某导弹护卫舰当即施放载有突击队员的快艇进行拦截,快艇以每小时30海里的速度向南偏东的方向全速追击.请问:快艇能否追上海盗船?如果能追上,请求出的值;如果未能追上,请说明理由.

 

查看答案和解析>>

(本小题满分12分)正在执行护航任务的某导弹护卫舰,突然收到一艘商船的求救信号,紧急前往相关海域.如图所示,到达相关海域处后发现,在南偏西、5海里外的洋面M处有一条海盗船,它正以每小时20海里的速度向南偏东的方向逃窜.某导弹护卫舰当即施放载有突击队员的快艇进行拦截,快艇以每小时30海里的速度向南偏东的方向全速追击.请问:快艇能否追上海盗船?如果能追上,请求出的值;如果未能追上,请说明理由.

查看答案和解析>>

(本小题满分12分)正在执行护航任务的某导弹护卫舰,突然收到一艘商船的求救信号,紧急前往相关海域.如图所示,到达相关海域处后发现,在南偏西、5海里外的洋面M处有一条海盗船,它正以每小时20海里的速度向南偏东的方向逃窜.某导弹护卫舰当即施放载有突击队员的快艇进行拦截,快艇以每小时30海里的速度向南偏东的方向全速追击.请问:快艇能否追上海盗船?如果能追上,请求出的值;如果未能追上,请说明理由.

查看答案和解析>>

已知递增等差数列满足:,且成等比数列.

(1)求数列的通项公式

(2)若不等式对任意恒成立,试猜想出实数的最小值,并证明.

【解析】本试题主要考查了数列的通项公式的运用以及数列求和的运用。第一问中,利用设数列公差为

由题意可知,即,解得d,得到通项公式,第二问中,不等式等价于,利用当时,;当时,;而,所以猜想,的最小值为然后加以证明即可。

解:(1)设数列公差为,由题意可知,即

解得(舍去).      …………3分

所以,.        …………6分

(2)不等式等价于

时,;当时,

,所以猜想,的最小值为.     …………8分

下证不等式对任意恒成立.

方法一:数学归纳法.

时,,成立.

假设当时,不等式成立,

时,, …………10分

只要证  ,只要证 

只要证  ,只要证 

只要证  ,显然成立.所以,对任意,不等式恒成立.…14分

方法二:单调性证明.

要证 

只要证  ,  

设数列的通项公式,        …………10分

,    …………12分

所以对,都有,可知数列为单调递减数列.

,所以恒成立,

的最小值为

 

查看答案和解析>>

 已知函数的一个零点,又 处有极值,在区间上是单调的,且在这两个区间上的单调性相反.(1)求的取值范围;(2)当时,求使成立的实数的取值范围.

从而    或

所以存在实数,满足题目要求.……………………12分

 

 

 

 

 

 

 

查看答案和解析>>


同步练习册答案