数学英语物理化学 生物地理
数学英语已回答习题未回答习题题目汇总试卷汇总试卷大全
题目列表(包括答案和解析)
复数=
A.; B.; C.; D.
查看答案和解析>>
化简
A.; B.; C. ; D. ;
一、填空题:(5’×11=55’)
题号
1
2
3
4
5
6
答案
0
(1,2)
7
8
9
10
11
8.3
②、③
二、选择题:(4’×4=16’)
12
13
14
15
A
C
B
20090116
三、解答题:(12’+14’+15’+16’+22’=79’)
16.解:由条件,可得,故左焦点的坐标为.
设为椭圆上的动点,由于椭圆方程为,故.
因为,所以
,
由二次函数性质可知,当时,取得最小值4.
所以,的模的最小值为2,此时点坐标为.
17.解:(1)当时,;
当且时,;
当时,;(不单独分析时的情况不扣分)
当时,.
(2)由(1)知:当时,集合中的元素的个数无限;
当时,集合中的元素的个数有限,此时集合为有限集.
因为,当且仅当时取等号,
所以当时,集合的元素个数最少.
此时,故集合.
18.(本题满分15分,第1小题6分,第2小题9分)
解:
(2)解:如图所示.由,,则面.
所以,四棱锥的体积为
.
19.解:(1)根据三条规律,可知该函数为周期函数,且周期为12.
由此可得,;
由规律②可知,,
;
又当时,,
所以,,由条件是正整数,故取.
综上可得,符合条件.
(2) 解法一:由条件,,可得
,
,.
因为,,所以当时,,
故,即一年中的7,8,9,10四个月是该地区的旅游“旺季”.
解法二:列表,用计算器可算得
月份
…
人数
383
463
499
482
416
319
故一年中的7,8,9,10四个月是该地区的旅游“旺季”.
20.解:(1)依条件得: 则无穷等比数列各项的和为:
(2)解法一:设此子数列的首项为,公比为,由条件得:,
则,即
而 则 .
所以,满足条件的无穷等比子数列存在且唯一,它的首项、公比均为,
其通项公式为,.
解法二:由条件,可设此子数列的首项为,公比为.
由………… ①
又若,则对每一
都有………… ②
从①、②得;
则;
因而满足条件的无穷等比子数列存在且唯一,此子数列是首项、公比均为无穷等比子
数列,通项公式为,.
(3)以下给出若干解答供参考,评分方法参考本小题阅卷说明:
问题一:是否存在数列的两个不同的无穷等比子数列,使得它们各项的和互为倒数?若存在,求出所有满足条件的子数列;若不存在,说明理由.
解:假设存在原数列的两个不同的无穷等比子数列,使它们的各项和之积为1。设这两个子数列的首项、公比分别为和,其中且或,则
因为等式左边或为偶数,或为一个分数,而等式右边为两个奇数的乘积,还是一个奇数。故等式不可能成立。所以这样的两个子数列不存在。
【以上解答属于层级3,可得设计分4分,解答分6分】
问题二:是否存在数列的两个不同的无穷等比子数列,使得它们各项的和相等?若存在,求出所有满足条件的子数列;若不存在,说明理由.
解:假设存在原数列的两个不同的无穷等比子数列,使它们的各项和相等。设这两个子数列的首项、公比分别为和,其中且或,则
………… ①
若且,则①,矛盾;若且,则①
,矛盾;故必有且,不妨设,则
①………… ②
1当时,②,等式左边是偶数,
右边是奇数,矛盾;
2当时,②
或
两个等式的左、右端的奇偶性均矛盾;
综合可得,不存在原数列的两个不同的无穷等比子数列,使得它们的各项和相等。
【以上解答属于层级4,可得设计分5分,解答分7分】
问题三:是否存在原数列的两个不同的无穷等比子数列,使得其中一个数列的各项和等于另一个数列的各项和的倍?若存在,求出所有满足条件的子数列;若不存在,说明理由.
解:假设存在满足条件的原数列的两个不同的无穷等比子数列。设这两个子数列的首项、公比分别为和,其中且或,则
显然当时,上述等式成立。例如取,,得:
第一个子数列:,各项和;第二个子数列:,
各项和,有,因而存在原数列的两个不同的无穷等比子数列,使得其中一个数列的各项和等于另一个数列的各项和的倍。
【以上解答属层级3,可得设计分4分,解答分6分.若进一步分析完备性,可提高一个层级评分】
问题四:是否存在原数列的两个不同的无穷等比子数列,使得其中一个数列的各项和等于另一个数列的各项和的倍?并说明理由.解(略):存在。
问题五:是否存在原数列的两个不同的无穷等比子数列,使得其中一个数列的各项和等于另一个数列的各项和的倍?并说明理由.解(略):不存在.
【以上问题四、问题五等都属于层级4的问题设计,可得设计分5分。解答分最高7分】
百度致信 - 练习册列表 - 试题列表
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区