19.(本题满分16分.第1小题10分.第2小题6分)在某个旅游业为主的地区.每年各个月份从事旅游服务工作的人数会发生周期性的变化. 现假设该地区每年各个月份从事旅游服务工作的人数可近似地用函数来刻画.其中:正整数表示月份且.例如时表示1月份,和是正整数,.统计发现.该地区每年各个月份从事旅游服务工作的人数有以下规律:① 各年相同的月份.该地区从事旅游服务工作的人数基本相同,② 该地区从事旅游服务工作的人数最多的8月份和最少的2月份相差约400人,③ 2月份该地区从事旅游服务工作的人数约为100人.随后逐月递增直到8月份达到最多. 查看更多

 

题目列表(包括答案和解析)

(本题满分16分,第1小题6分,第2小题10分)

   已知椭圆的离心率为分别为椭圆的左、右焦点,若椭圆的焦距为2.

   ⑴求椭圆的方程;

⑵设为椭圆上任意一点,以为圆心,为半径作圆,当圆与椭圆的右准线  有公共点时,求△面积的最大值.

查看答案和解析>>

(本题满分16分,第1小题6分,第2小题10分)

   已知椭圆的离心率为分别为椭圆的左、右焦点,若椭圆的焦距为2.

   ⑴求椭圆的方程;

⑵设为椭圆上任意一点,以为圆心,为半径作圆,当圆与椭圆的右准线  有公共点时,求△面积的最大值.

查看答案和解析>>

(本题满分16分,第(1)小题6分,第(2)小题10分)

某团体计划于2011年年初划拨一笔款项用于设立一项基金,这笔基金由投资公司运作,每年可有3%的受益.

(1)该笔资金中的A(万元)要作为保障资金,每年年末将本金A及A的当年受益一并作为来年的投资继续运作,直到2020年年末达到250(万元),求A的值;

(2)该笔资金中的B(万元)作为奖励资金,每年年末要从本金B及B的当年受益中支取250(万元),余额来年继续运作,并计划在2020年年末支取后该部分资金余额为0,求B的值.(A和B的结果以万元为单位,精确到万元)

查看答案和解析>>

(本题满分16分,第(1)小题6分,第(2)小题10分)

如图,已知点是边长为的正三角形的中心,线段经过点,并绕点 转动,分别交边于点;设,其中

(1)求表达式的值,并说明理由;

(2)求面积的最大和最小值,并指出相应的的值.

查看答案和解析>>

(本题满分16分,第(1)小题6分,第(2)小题10分)
某团体计划于2011年年初划拨一笔款项用于设立一项基金,这笔基金由投资公司运作,每年可有3%的受益.
(1)该笔资金中的A(万元)要作为保障资金,每年年末将本金A及A的当年受益一并作为来年的投资继续运作,直到2020年年末达到250(万元),求A的值;
(2)该笔资金中的B(万元)作为奖励资金,每年年末要从本金B及B的当年受益中支取250(万元),余额来年继续运作,并计划在2020年年末支取后该部分资金余额为0,求B的值.(A和B的结果以万元为单位,精确到万元)

查看答案和解析>>

一、填空题:(5’×11=55’)

题号

1

2

3

4

5

6

答案

0

(1,2)

2

题号

7

8

9

10

11

 

答案

4

8.3

②、③

 

二、选择题:(4’×4=16’)

题号

12

13

14

15

答案

A

C

B

20090116

三、解答题:(12’+14’+15’+16’+22’=79’)

16.解:由条件,可得,故左焦点的坐标为

为椭圆上的动点,由于椭圆方程为,故

因为,所以

,

由二次函数性质可知,当时,取得最小值4.

所以,的模的最小值为2,此时点坐标为

17.解:(1)当时,

时,

时,;(不单独分析时的情况不扣分)

时,

(2)由(1)知:当时,集合中的元素的个数无限;

时,集合中的元素的个数有限,此时集合为有限集.

因为,当且仅当时取等号,

所以当时,集合的元素个数最少.

此时,故集合

18.(本题满分15分,1小题6分,第2小题9

解:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (2)解:如图所示.由,则

所以,四棱锥的体积为

19.解:(1)根据三条规律,可知该函数为周期函数,且周期为12.

由此可得,

由规律②可知,

又当时,

所以,,由条件是正整数,故取

    综上可得,符合条件.

(2) 解法一:由条件,,可得

因为,所以当时,

,即一年中的7,8,9,10四个月是该地区的旅游“旺季”.

解法二:列表,用计算器可算得

月份

6

7

8

9

10

11

人数

383

463

499

482

416

319

故一年中的7,8,9,10四个月是该地区的旅游“旺季”.

20.解:(1)依条件得: 则无穷等比数列各项的和为:

    

  (2)解法一:设此子数列的首项为,公比为,由条件得:

,即    

 则 .

所以,满足条件的无穷等比子数列存在且唯一,它的首项、公比均为

其通项公式为.

解法二:由条件,可设此子数列的首项为,公比为

………… ①

又若,则对每一

都有………… ②

从①、②得

因而满足条件的无穷等比子数列存在且唯一,此子数列是首项、公比均为无穷等比子

数列,通项公式为

(3)以下给出若干解答供参考,评分方法参考本小题阅卷说明:

问题一:是否存在数列的两个不同的无穷等比子数列,使得它们各项的和互为倒数?若存在,求出所有满足条件的子数列;若不存在,说明理由.

解:假设存在原数列的两个不同的无穷等比子数列,使它们的各项和之积为1。设这两个子数列的首项、公比分别为,其中,则

因为等式左边或为偶数,或为一个分数,而等式右边为两个奇数的乘积,还是一个奇数。故等式不可能成立。所以这样的两个子数列不存在。

【以上解答属于层级3,可得设计分4分,解答分6分】

问题二:是否存在数列的两个不同的无穷等比子数列,使得它们各项的和相等?若存在,求出所有满足条件的子数列;若不存在,说明理由.

解:假设存在原数列的两个不同的无穷等比子数列,使它们的各项和相等。设这两个子数列的首项、公比分别为,其中,则

………… ①

,则①,矛盾;若,则①

,矛盾;故必有,不妨设,则

………… ②

1时,②,等式左边是偶数,

右边是奇数,矛盾;

2时,②

两个等式的左、右端的奇偶性均矛盾;

综合可得,不存在原数列的两个不同的无穷等比子数列,使得它们的各项和相等。

【以上解答属于层级4,可得设计分5分,解答分7分】

问题三:是否存在原数列的两个不同的无穷等比子数列,使得其中一个数列的各项和等于另一个数列的各项和的倍?若存在,求出所有满足条件的子数列;若不存在,说明理由.

解:假设存在满足条件的原数列的两个不同的无穷等比子数列。设这两个子数列的首项、公比分别为,其中,则

显然当时,上述等式成立。例如取得:

第一个子数列:,各项和;第二个子数列:

各项和,有,因而存在原数列的两个不同的无穷等比子数列,使得其中一个数列的各项和等于另一个数列的各项和的倍。

【以上解答属层级3,可得设计分4分,解答分6分.若进一步分析完备性,可提高一个层级评分】

问题四:是否存在原数列的两个不同的无穷等比子数列,使得其中一个数列的各项和等于另一个数列的各项和的倍?并说明理由.解(略):存在。

问题五:是否存在原数列的两个不同的无穷等比子数列,使得其中一个数列的各项和等于另一个数列的各项和的倍?并说明理由.解(略):不存在.

【以上问题四、问题五等都属于层级4的问题设计,可得设计分5分。解答分最高7分】

 


同步练习册答案