题目列表(包括答案和解析)
(本小题满分16分)从数列中取出部分项,并将它们按原来的顺序组成一个数列,称之为数列
的一个子数列.
设数列是一个首项为
、公差为
的无穷等差数列(即项数有无限项).
(1)若,
,
成等比数列,求其公比
.
(2)若,从数列
中取出第2项、第6项作为一个等比数列的第1项、第2项,试问该数列是否为
的无穷等比子数列,请说明理由.
(3)若,从数列
中取出第1项、第
项(设
)作为一个等比数列的第1项、第2项,试问当且仅当
为何值时,该数列为
的无穷等比子数列,请说明理由.
(本小题满分16分)从数列中取出部分项,并将它们按原来的顺序组成一个数列,称之为数列
的一个子数列.
设数列是一个首项为
、公差为
的无穷等差数列(即项数有无限项).
(1)若,
,
成等比数列,求其公比
.
(2)若,从数列
中取出第2项、第6项作为一个等比数列的第1项、第2项,试问该数列是否为
的无穷等比子数列,请说明理由.
(3)若,从数列
中取出第1项、第
项(设
)作为一个等比数列的第1项、第2项,试问当且仅当
为何值时,该数列为
的无穷等比子数列,请说明理由.
已知数列是各项均不为0的等差数列,公差为d,
为其前n项和,且满足
,
.数列
满足
,
,
为数列
的前n项和.
(1)求数列的通项公式
和数列
的前n项和
;
(2)若对任意的,不等式
恒成立,求实数
的取值范围;
(3)是否存在正整数,使得
成等比数列?若存在,求出所有
的值;若不存在,请说明理由.
【解析】第一问利用在中,令n=1,n=2,
得 即
解得,,
[
又时,
满足
,
,
第二问,①当n为偶数时,要使不等式恒成立,即需不等式
恒成立.
,等号在n=2时取得.
此时
需满足
.
②当n为奇数时,要使不等式恒成立,即需不等式
恒成立.
是随n的增大而增大, n=1时
取得最小值-6.
此时
需满足
.
第三问,
若成等比数列,则
,
即.
由,可得
,即
,
.
(1)(法一)在中,令n=1,n=2,
得 即
解得,,
[
又时,
满足
,
,
.
(2)①当n为偶数时,要使不等式恒成立,即需不等式
恒成立.
,等号在n=2时取得.
此时
需满足
.
②当n为奇数时,要使不等式恒成立,即需不等式
恒成立.
是随n的增大而增大, n=1时
取得最小值-6.
此时
需满足
.
综合①、②可得的取值范围是
.
(3),
若成等比数列,则
,
即.
由,可得
,即
,
.
又,且m>1,所以m=2,此时n=12.
因此,当且仅当m=2,
n=12时,数列中的
成等比数列
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com