(1)求数列{}.{}的通项公式, 查看更多

 

题目列表(包括答案和解析)

数列{an}的通项公式为an=
1
(n+1)2
(n∈N*),设f(n)=(1-a1)(1-a2)(1-a3)…(1-an).
(1)求f(1)、f(2)、f(3)、f(4)的值;
(2)求f(n)的表达式;
(3)数列{bn}满足b1=1,bn+1=2f(n)-1,它的前n项和为g(n),求证:当n∈N*时,g(2n)-
n
2
≥1.

查看答案和解析>>

数列{an}的通项公式为an=数学公式(n∈N*),设f(n)=(1-a1)(1-a2)(1-a3)…(1-an).
(1)求f(1)、f(2)、f(3)、f(4)的值;
(2)求f(n)的表达式;
(3)数列{bn}满足b1=1,bn+1=2f(n)-1,它的前n项和为g(n),求证:当n∈N*时,g(2n)-数学公式≥1.

查看答案和解析>>

数列{an}的通项公式为an=
1
(n+1)2
(n∈N*),设f(n)=(1-a1)(1-a2)(1-a3)…(1-an).
(1)求f(1)、f(2)、f(3)、f(4)的值;
(2)求f(n)的表达式;
(3)数列{bn}满足b1=1,bn+1=2f(n)-1,它的前n项和为g(n),求证:当n∈N*时,g(2n)-
n
2
≥1.

查看答案和解析>>

数列{an}的通项公式为an=(n∈N*),设f(n)=(1-a1)(1-a2)(1-a3)…(1-an).
(1)求f(1)、f(2)、f(3)、f(4)的值;
(2)求f(n)的表达式;
(3)数列{bn}满足b1=1,bn+1=2f(n)-1,它的前n项和为g(n),求证:当n∈N*时,g(2n)-≥1.

查看答案和解析>>

已知数列{an}的通项公式为an=3n-1,在等差数列数列{bn}中,bn>0(n∈N*),且b1+b2+b3=15,
又a1+b1、a2+b2、a3+b3成等比数列.
(1)求数列{an•bn}的通项公式;
(2)求数列{an•bn}的前n项和Tn

查看答案和解析>>


同步练习册答案