(2) 若直线与曲线C相交于A.B两点.求面积的最大值. 查看更多

 

题目列表(包括答案和解析)

曲线C上任一点到定点(0,
1
8
)的距离等于它到定直线y=-
1
8
的距离.
(1)求曲线C的方程;
(2)经过P(1,2)作两条不与坐标轴垂直的直线l1、l2分别交曲线C于A、B两点,且l1⊥l2,设M是AB中点,问是否存在一定点和一定直线,使得M到这个定点的距离与它到定直线的距离相等.若存在,求出这个定点坐标和这条定直线的方程.若不存在,说明理由.

查看答案和解析>>

直线MN与双曲线C:的左、右支分别交于M、N两点,与双曲线C的右准线相交于P点,F为右焦点,若|FM|=2|FN|,又=λ(λ∈R),则实数λ的值为(   )

A.          B.1         C.2         D.

 

查看答案和解析>>

直线MN与双曲线C:的左、右支分别交于M、N两点,与双曲线C的右准线相交于P点,F为右焦点,若|FM|=2|FN|,又=λ (λ∈R),则实数λ的值为(   )
A.B.1C.2D.

查看答案和解析>>

若曲线
x=sin2θ
y=sinθ-1
,(θ为参数)与直线x=m交于相异两点,则实数m的取值范围是(  )
A、(0,1]
B、[0,1)
C、(0,+∞)
D、[0,+∞)

查看答案和解析>>

已知曲线C的方程为y2=4x(x>0),曲线E是以F1(-1,0)、F2(1,0)为焦点的椭圆,点P为曲线C与曲线E在第一象限的交点,且|PF2|=
53

(1)求曲线E的标准方程;
(2)直线l与椭圆E相交于A,B两点,若AB的中点M在曲线C上,求直线l的斜率k的取值范围.

查看答案和解析>>

2009年曲靖一种高考冲刺卷理科数学(一)

一、

1 B 2C 3A 4A 5 A 6 D 7D 8C 9B

10B 11 C 12 A

1依题意得,所以,因此选B

2依题意得。又在第二象限,所以

,故选C

3

因此选A

4 由

因为为纯虚数的充要条件为

故选A

5如图,

 

故选A

6.设

故选D

7.设等差数列的首项为,公差,因为成等比数列,所以,即,解得,故选D

8.由,所以之比为2,设,又点在圆上,所以,即+-4,化简得=16,故选C

9.长方体的中心即为球心,设球半径为,则

于是两点的球面距离为故选B

10.先分别在同一坐标系上画出函数的图象(如图1)

www.ks5u.com   高考资源网

观察图2,显然,选B

11.依题意,

故选C

12.由题意知,

 

    ①

代入式①得

由方程的两根为

故选A。

二、

13.5   14.7    15.22    16.①

13.5.线性规划问题先作出可行域,注意本题已是最优的特定参数的特点,可考虑特殊的交点,再验证,由题设可知

应用运动变化的观点验证满足为所求。

14.7. 由题意得

因此A是钝角,

15.22,连接的周章为

16.①当时,,取到最小值,因次,是对称轴:②当时,因此不是对称中心;③由,令可得上不是增函数;把函数的图象向左平移得到的图象,得不到的图象,故真命题序号是①。

 17.(1)上单调递增,

上恒成立,即上恒成立,即实数的取值范围

(2)由题设条件知上单调递增。

,即

的解集为

的解集为

18.(1)过连接

侧面

是边长为2的等边三角形。又点,在底面上的射影,

(法一)(2)就是二面角的平面角,都是边长为2的正三角形,即二面角的大小为45°

(3)取的中点为连接的中点,,又,且在平面上,又的中点,线段的长就是到平面的距离在等腰直角三角形中,,即到平面的距离是

 

(法二)(2)轴、轴、轴建立空间直角坐标系,则点设平面的法向量为,则,解得,平面的法向量

向量所成角为45°故二面角的大小为45°,

(3)由的中点设平面的法向量为,则,解得到平面的距离为

19.(1)取值为0,1,2,3,4

的分布列为

0

1

2

3

4

P

(2)由

所以,当时,由

时,由

即为所求‘

20.(1)在一次函数的图像上,

 

于是,且

数列是以为首项,公比为2的等比数列

(3)      由(1)知

 

21.(1)由题意得:

点Q在以M、N为焦点的椭圆上,即

点Q的轨迹方程为

(2)

设点O到直线AB的距离为,则

时,等号成立

时,面积的最大值为3

22.(1)

(2)由题意知

(3)等价证明

由(1)知

  

 

 

 

 

 

 

 

 


同步练习册答案