9.已知的等差中项是的最小值是 A.5 B.4 C.3 D.6 查看更多

 

题目列表(包括答案和解析)

已知数列{an}的通项为an,前n项和为sn,且an是sn与2的等差中项,数列{bn}中,b1=1,点P(bn,bn+1)在直线x-y+2=0上.
(Ⅰ)求数列{an}、{bn}的通项公式an,bn
(Ⅱ)设{bn}的前n项和为Bn,试比较
1
B1
+
1
B2
+…+
1
Bn
与2的大小.
(Ⅲ)设Tn=
b1
a1
+
b2
a2
+…+
bn
an
,若对一切正整数n,Tn<c(c∈Z)恒成立,求c的最小值.

查看答案和解析>>

13、已知等差数列{an}的前n项和为Sn,若S13<0,S12>0,,则此数列{an}中绝对值最小的项是(  )

查看答案和解析>>

已知:在数列{an}中,a1=
1
4
,an+1=
1
4
an+
2
4n+1

(1)令bn=4nan,求证:数列{bn}是等差数列;
(2)若Sn为数列{an}的前n项的和,Sn+λnan
5
9
对任意n∈N*恒成立,求实数λ的最小值.

查看答案和解析>>

已知非零向量
OA
OB
OC
OD
满足:
OA
OB
OC
OD
(α,β,γ∈R)
,B、C、D为不共线三点,给出下列命题:
①若α=
3
2
,β=
1
2
,γ=-1
,则A、B、C、D四点在同一平面上;
②当α>0,β>0,γ=
2
时,若|
OA
|=
3
|
OB
|=|
OC
|=|
OD
|=1
OB
OC
>=
6
OD
OB
>=<
OD
OC
>=
π
2
,则α+β的最大值为
6
-
2

③已知正项等差数列an(n∈N*),若α=a2,β=a2009,γ=0,且A、B、C三点共线,但O点不在直线BC上,则
1
a3
+
4
a2008
的最小值为9;
④若α+β=1(αβ≠0),γ=0,则A、B、C三点共线且A分
BC
所成的比λ一定为
α
β

其中你认为正确的所有命题的序号是
 

查看答案和解析>>

已知等差数列an中,公差d>0,其前n项和为Sn,且满足a2•a3=45,a1+a4=14.
(1)求数列an的通项公式;
(2)设由bn=
Sn
n+c
(c≠0)构成的新数列为bn,求证:当且仅当c=-
1
2
时,数列bn是等差数列;
(3)对于(2)中的等差数列bn,设cn=
8
(an+7)•bn
(n∈N*),数列cn的前n项和为Tn,现有数列f(n),f(n)=
2bn
an-2
-Tn
(n∈N*),
求证:存在整数M,使f(n)≤M对一切n∈N*都成立,并求出M的最小值.

查看答案和解析>>

 

一、选择题

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

D

B

C

C

B

C

D

A

D

A

B

二、填空题

13.24    14.        15.     16.    ①④   

三、解答题

17. 解:(Ⅰ)因为各组的频率和等于1,故第四组的频率:

……4分

直方图如右所示……………          

   (Ⅱ)依题意,60及以上的分数所在的第三、四、五、六组,

频率和为

所以,抽样学生成绩的合格率是%..........................6分

   (Ⅲ)”的人数是9,18,15,3。所以从成绩是60分以上(包括60分)的学生中选一人,该生是优秀学生的概率是

 ……………………………………………………10分

18.(Ⅰ)证法一:取的中点G,连结FG、AG,

依题意可知:GF是的中位线,

则  GF∥

      AE∥,

所以GF∥AE,且GF=AE,即四边形AEFG为平行四边形,………3分

则EF∥AG,又AG平面,EF平面,

所以EF∥平面.                            ………6分

证法二:取DC的中点G,连结FG,GE.

平面, GF平面∴FG∥平面.………3分

同理:∥平面,且,∴平面EFG∥平面,平面,

∴EF∥平面.                                        ………6分

证法三:连结EC延长交AD于K,连结, E、F分别CK、CD1的中点,

所以   FE∥D1K                                    ……3分

∵FE∥D1K,平面平面,∴EF∥平面.………6分

   (Ⅱ)解:.

.

的值为1.   ………12分

19.解:(1)

    ………3分

∵角A为钝角,

                 ………………4分

取值最小值,

其最小值为……………………6分

   (2)由………………8分

       ,

…………10分

在△中,由正弦定理得:   ……12分

20.解:(1)

由题意得,经检验满足条件。      …………2分

(2)由(1)知…………4分

(舍去)…                   ……………6分

当x变化时,的变化情况如下表:

x

-1

(-1,0)

0

(0,1)

1

 

0

+

 

-1

-4

-3

             ……………9分

∵关于x的方程上恰有两个不同的实数根,

                                        …………12分

21.解:⑴设动点的坐标为P(x,y),则=(x,y-2),=(x,y+2),=(2-x,-y)

?=m||2

∴x2+y2-4=m[(x-2)2+y2

即(1-m)x2+(1-m)y2+4mx-4m-4=0,                      ………3分

若m=1,则方程为x=2,表示过点(2,0)且平行于y轴的直线;   ………4分

若m≠1,则方程化为:,表示以(,0)为圆心,以 为半径的圆;                                                 ………6分

   (2)当m=2时,方程化为(x-4)2+y2=4;                       

,则,圆心到直线距离时,………8分

解得,又,所以图形为上半个圆(包括与轴的两个交点)……10分

故直线与半圆相切时

当直线过轴上的两个交点时知

因此的取值范围是.                            ………12分

22.解:(1)

2

3

51

200

196

192

1

4

                                                                   ………4分

   (2)由题意知数列的前50项成首项为200,公差为-4的等差数列,从第51项开始,奇数项均为1,偶数项均为4.                             

从而=                    

=.              ……………6分       

   (3)当时,因为,                       

   所以                          …………8分       

时,

因为,所以,       ……………10分       

时,

综上:.                                      ……………12分

 


同步练习册答案