(Ⅲ)已知正数满足求证:当时.对任 查看更多

 

题目列表(包括答案和解析)

已知函数满足,且

   (1)当时,求的表达式;

   (2)设,求证:;w.w.w.k.s.5.u.c.o.m 

(3)设,对每一个,在之间插入,得到新数列,设是数列的前项和,试问是否存在正整数,使?若存在求出的值;若不存在,请说明理由.

查看答案和解析>>

已知函数满足对任意实数都有成立,且当时,,.

(1)求的值;

(2)判断上的单调性,并证明;

(3)若对于任意给定的正实数,总能找到一个正实数,使得当时,,则称函数处连续。试证明:处连续.

 

查看答案和解析>>

已知函数满足对任意实数都有成立,且当时,,.
(1)求的值;
(2)判断上的单调性,并证明;
(3)若对于任意给定的正实数,总能找到一个正实数,使得当时,,则称函数处连续。试证明:处连续.

查看答案和解析>>

已知函数f(x)定义在区间(-1,1)上,f(
1
2
)=-1,且当x,y∈(-1,1)时,恒有f(x)-f(y)=f(
x-y
1-xy
),又数列{an}满足a1=
1
2
,an+1=
2an
1+
a
2
n
,设bn=
1
f(a1)
+
1
f(a2)
+…+
1
f(an)

(1)证明:f(x)在(-1,1)上为奇函数;
(2)求f(an)的表达式;
(3)是否存在正整数m,使得对任意n∈N,都有bn
m-8
4
成立,若存在,求出m的最小值;若不存在,请说明理由.

查看答案和解析>>

已知Sn是数列{an }的前n项和,Sn满足关系式2Sn=Sn-1-(
1
2
)n-1+2
a1=
1
2

(n≥2,n为正整数).
(1)令bn=2nan,求证数列{bn }是等差数列,并求数列{an}的通项公式;
(2)对于数列{un},若存在常数M>0,对任意的n∈N*,恒有|un+1-un|+|un-un-1|+…+|u2-u1|≤M成立,称数列{un} 为“差绝对和有界数列”,
证明:数列{an}为“差绝对和有界数列”;
(3)根据(2)“差绝对和有界数列”的定义,当数列{cn}为“差绝对和有界数列”时,
证明:数列{cn•an}也是“差绝对和有界数列”.

查看答案和解析>>

一、选择题:本大题共12小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

    1.C    2.C    3.C    4.C    5.A    6.D    7.A    8.A    9.B   

10.D   11.A   12.B

二、填空题:本大题4共小题,每小题5分。

   13.    14.    15.     16.①④

三、解答题(解答应写出文字说明,证明过程或演算步骤)

 

17.(I)

由余弦定理得

整理得得

,故为直角三角形

(Ⅱ)设内角对边的边长分别是

外接圆半径为1,

周长的取值范围

18.(I)证明:

(Ⅱ)解:设A

设点到平面的距离为

(Ⅲ解:设轴建立空间直角坐标宿,为计算方便,不妨设

要使二面角的大小为120°,则

即当时,二面角的大小为120°

19.(I)记“厂家任意取出4件产品检验,其中至少有一件是合格品“为事件A,

(Ⅱ)的可能取值为0,1,2,

所以的概率分布为

 

 

0

1

2

 

 

 

 

 

 

20.(I)设

(Ⅱ)曲线向左平移1一个单位,得到曲线的方程为

(1)当

(2)当

(Ⅲ)

21.(I)

(Ⅱ)令

(Ⅲ)用数学归纳法证明

请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题记分,做答时,用2B铅笔在答题卡上把所选题目对应的题号涂黑。

 

22.

23.(I)为参数,为倾斜角,且

(Ⅱ)

24.

   

 


同步练习册答案