解:∵,∴可得.(1)∵△ABC为直角三角形.∴.即. 查看更多

 

题目列表(包括答案和解析)

如图,分别以RtABC的直角边AC及斜边AB向外作等边△ACD、等边△ABE.已知∠BAC=30º,EFAB,垂足为F,连结DF

(1)求证:ACEF

(2)求证:四边形ADFE是平行四边形.

【解析】由等边△ABE和Rt△ABC,求得Rt△ABC∽Rt△EAF,即可得AC=EF,由等边三角形的性质得出∠BDF=30°,从而证得△DBF≌△EFA,则AE=DF,再由FE=AB,得出四边形ADFE为平行四边形

 

查看答案和解析>>

如图,分别以RtABC的直角边AC及斜边AB向外作等边△ACD、等边△ABE.已知∠BAC=30º,EFAB,垂足为F,连结DF

(1)求证:ACEF

(2)求证:四边形ADFE是平行四边形.

【解析】由等边△ABE和Rt△ABC,求得Rt△ABC∽Rt△EAF,即可得AC=EF,由等边三角形的性质得出∠BDF=30°,从而证得△DBF≌△EFA,则AE=DF,再由FE=AB,得出四边形ADFE为平行四边形

 

查看答案和解析>>

如图,在△ABC中,点DAC上,DA=DB,∠C=∠DBC,以AB为直径的AC于点EF上的点,且AF=BF

(1)求证:BC是的切线;

(2)若sinC=AE=,求sinF的值和AF的长.

【解析】(1)AB是直径.证明ABBC即可.

(2)连接BE,证得∠AFE=∠C. 即可求出sinF的值,连接BF,通过解直角三角形ABE求得BF,即可

 

查看答案和解析>>

如图,在△ABC中,点DAC上,DA=DB,∠C=∠DBC,以AB为直径的AC于点EF上的点,且AF=BF

(1)求证:BC是的切线;

(2)若sinC=AE=,求sinF的值和AF的长.

【解析】(1)AB是直径.证明ABBC即可.

(2)连接BE,证得∠AFE=∠C. 即可求出sinF的值,连接BF,通过解直角三角形ABE求得BF,即可

 

查看答案和解析>>

请尝试解决以下问题:
(1)如图1,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证DE+BF=EF.
感悟解题方法,并完成下列填空:
将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,由旋转可得:
AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,点G,B,F在同一条直线上.
∵∠EAF=45°∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,∴∠1+∠3=45°.
即∠GAF=∠
FAE
FAE

又AG=AE,AF=AF
∴△GAF≌
△EAF
△EAF

GF
GF
=EF,故DE+BF=EF.
(2)运用(1)解答中所积累的经验和知识,完成下题:
如图2,在直角梯形ABCD中,AD∥BC(AD>BC),∠D=90°,AD=CD=10,E是CD上一点,且∠BAE=45°,DE=4,求BE的长.
(3)类比(1)证明思想完成下列问题:在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,若△ABC固定不动,△AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),在旋转过程中,等式BD2+CE2=DE2始终成立,请说明理由.

查看答案和解析>>


同步练习册答案