题目列表(包括答案和解析)
(本小题满分12分)二次函数的图象经过三点.
(1)求函数的解析式(2)求函数在区间上的最大值和最小值
(本小题满分12分)已知等比数列{an}中,
(Ⅰ)求数列{an}的通项公式an;
(Ⅱ)设数列{an}的前n项和为Sn,证明:;
(Ⅲ)设,证明:对任意的正整数n、m,均有(本小题满分12分)已知函数,其中a为常数.
(Ⅰ)若当恒成立,求a的取值范围;
(Ⅱ)求的单调区间.(本小题满分12分)
甲、乙两篮球运动员进行定点投篮,每人各投4个球,甲投篮命中的概率为,乙投篮命中的概率为
(Ⅰ)求甲至多命中2个且乙至少命中2个的概率;
(Ⅱ)若规定每投篮一次命中得3分,未命中得-1分,求乙所得分数η的概率分布和数学期望.(本小题满分12分)已知是椭圆的两个焦点,O为坐标原点,点在椭圆上,且,圆O是以为直径的圆,直线与圆O相切,并且与椭圆交于不同的两点A、B.
(1)求椭圆的标准方程;w.w.w.k.s.5.u.c.o.m
(2)当时,求弦长|AB|的取值范围.
一、选择题(每小题5分,共60分)
BDACC ACDDB AA
二、填空题(每小题4分,共16分)
13.; 14. 15.―192 16.
三、解答题(共74分)
17.解:(I)由正弦定理,有
代入得
即
(Ⅱ)
由得
所以,当时,取得最小值为0
18.解:(I)由已知得
故
即
故数列为等比数列,且
由当时,
所以
(Ⅱ)
所以
19.解:(I)从50名教师随机选出2名的方法为=1225,选出2人使用教材版本相同的方法数
故2人使用版本相同的概率为。
(Ⅱ)
的分布为
0
1
2
20.解(I)由该四棱锥的三视图可知,该四棱锥的底面是边长为1的正方形,
侧棱底面,且,
(Ⅱ)不论点E在何位置,都有
证明:连结是正方形,
底面,且平面,
又平面
不论点在何位置,都有平面
不论点E在何位置,都有。
(Ⅲ)以为坐标原点,所在的直线为轴建立空间直角坐标系如图:
则从而
设平面和平面的法向量分别为
,
由法向量的性质可得:
令则
设二面角的平面角为,则
二面角的大小为。
21.解:(1)由题意可知直线的方程为,
因为直线与圆相切,所以,即
从而
(2)设,则,
又
(
①当时,,解得,
此时椭圆方程为
②当时,,解得,
当,故舍去
综上所述,椭圆的方程为
22.解:(I)依题意,知的定义域为(0,+)
当时,
令,解得。
当时,;当时,
又所以的极小值为2-2,无极大值。
(Ⅱ);
令,解得。
(1)若令,得令,得
(2)若,
①当时,,
令,得或;
令,得
②当时,
③当时,得,
令,得或
令,得
综上所述,当时,的递减区间为,递增区间为
当时,的递减区间为;递增区间为
当时,递减区间为
当时,的递减区间为,递增区间为
(Ⅲ)当时, ,
由,知时,
依题意得:对一切正整数成立
令,则(当且仅当时取等号)
又在区间单调递增,得,
故又为正整数,得
当时,存在,对所有满足条件。
所以,正整数的最大值为32。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com