如图.有两个可以自由转动的均匀转盘A.B.转盘A被均匀地分成4等分.每份分别标上1.2.3.4四个数字,转盘B被均匀地分成6等份.每份分别标上1.2.3.4.5.6六个数字. 有人为甲.乙两人设计了一个游戏.其规则如下:(1)同时自由转动转盘A.B, 查看更多

 

题目列表(包括答案和解析)

如图①,△ABC中,AB=BC,∠B=90°,点A,B的坐标分别(0,10),(8,4),点C在 第一象限.动点P从点A出发沿边AB―BC匀速运动,同时动点Q以相同的速度在x轴上运动,图②是当点P在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象.

(1)求点P、Q运动的速度;

(2)求点C的坐标;

(3)求点P在边AB上运动时,△OPQ的面积S(平方单位)关于时间t(秒)的函数关系式,并求当点P运动到边AB上哪个位置时,△OPQ的面积最大?

(4)(本小题为选做题,做对另加3分,但全卷满分不超过150分)已知点P在边AB上运动时,∠OPQ的大小随时间t的增大而增大,点P在边BC上运动时,∠OPQ的大小随时间t的增大而减小,那么当点P在这两边上运动时,使∠OPQ =90°的点P有

              ______个(只填结论,不需解答过程).

 

  图 ①                           图②           

查看答案和解析>>

(本题满分10分)

如图,将OA = 6,AB = 4的矩形OABC放置在平面直角坐标系中,动点M、N以每秒1个单位的速度分别从点A、C同时出发,其中点M沿AO向终点O运动,点N沿CB向终点B运动,当两个动点运动了t秒时,过点N作NP⊥BC,交OB于点P,连接MP.

(1)点B的坐标为   ;用含t的式子表示点P的坐标为     ;(3分)

(2)记△OMP的面积为S,求S与t的函数关系式(0 < t < 6);并求t为何值时,S有最大值?(4分)

(3)试探究:当S有最大值时,在y轴上是否存在点T,使直线MT把△ONC分割成三角形和四边形两部分,且三角形的面积是△ONC面积的?若存在,求出点T的坐标;若不存在,请说明理由.(3分)

 

查看答案和解析>>

(本题满分10分)
如图,将OA = 6,AB = 4的矩形OABC放置在平面直角坐标系中,动点M、N以每秒1个单位的速度分别从点A、C同时出发,其中点M沿AO向终点O运动,点N沿CB向终点B运动,当两个动点运动了t秒时,过点N作NP⊥BC,交OB于点P,连接MP.

(1)点B的坐标为  ;用含t的式子表示点P的坐标为    ;(3分)
(2)记△OMP的面积为S,求S与t的函数关系式(0 < t < 6);并求t为何值时,S有最大值?(4分)
(3)试探究:当S有最大值时,在y轴上是否存在点T,使直线MT把△ONC分割成三角形和四边形两部分,且三角形的面积是△ONC面积的?若存在,求出点T的坐标;若不存在,请说明理由.(3分)

查看答案和解析>>

(本题满分10分)
如图,将OA = 6,AB = 4的矩形OABC放置在平面直角坐标系中,动点M、N以每秒1个单位的速度分别从点A、C同时出发,其中点M沿AO向终点O运动,点N沿CB向终点B运动,当两个动点运动了t秒时,过点N作NP⊥BC,交OB于点P,连接MP.

(1)点B的坐标为  ;用含t的式子表示点P的坐标为    ;(3分)
(2)记△OMP的面积为S,求S与t的函数关系式(0 < t < 6);并求t为何值时,S有最大值?(4分)
(3)试探究:当S有最大值时,在y轴上是否存在点T,使直线MT把△ONC分割成三角形和四边形两部分,且三角形的面积是△ONC面积的?若存在,求出点T的坐标;若不存在,请说明理由.(3分)

查看答案和解析>>

(本题满分10分)

如图,将OA = 6,AB = 4的矩形OABC放置在平面直角坐标系中,动点M、N以每秒1个单位的速度分别从点A、C同时出发,其中点M沿AO向终点O运动,点N沿CB向终点B运动,当两个动点运动了t秒时,过点N作NP⊥BC,交OB于点P,连接MP.

(1)点B的坐标为   ;用含t的式子表示点P的坐标为     ;(3分)

(2)记△OMP的面积为S,求S与t的函数关系式(0 < t < 6);并求t为何值时,S有最大值?(4分)

(3)试探究:当S有最大值时,在y轴上是否存在点T,使直线MT把△ONC分割成三角形和四边形两部分,且三角形的面积是△ONC面积的?若存在,求出点T的坐标;若不存在,请说明理由.(3分)

 

查看答案和解析>>


同步练习册答案