直线向正方形方向移动.直到与重合.直角 查看更多

 

题目列表(包括答案和解析)

已知正方形ABCD,点B与坐标原点O重合,BC、BA分别在x轴和y轴上,对角线BD在射线OM上,点E在y轴上,OA、OE的长分别是2和6,正方形ABCD以每秒2个单位长度的速度沿射线OM(BD始终在射线OM上)方向移动,同时点P从点C以每秒1个单位长度的速度沿折线CD—DA向点A移动,当一点到达终点时,另一点也停止移动,设移动时间为t秒
【小题1】当0≤t≤2时,直接写出点P的坐标(用t的代数式表示).
【小题2】当四边形EABO是等腰梯形时,①求t的值;②求证:OA=ED
【小题3】是否存在这样的t值,使EF//x轴,若有,求出点P的坐标;若没有,说明理由。

查看答案和解析>>

已知正方形ABCD,点B与坐标原点O重合,BC、BA分别在x轴和y轴上,对角线BD在射线OM上,点E在y轴上,OA、OE的长分别是2和6,正方形ABCD以每秒2个单位长度的速度沿射线OM(BD始终在射线OM上)方向移动,同时点P从点C以每秒1个单位长度的速度沿折线CD—DA向点A移动,当一点到达终点时,另一点也停止移动,设移动时间为t秒

 1.当0≤t≤2时,直接写出点P的坐标(用t的代数式表示).

2.当四边形EABO是等腰梯形时,①求t的值;②求证:OA=ED

3.是否存在这样的t值,使EF//x轴,若有,求出点P的坐标;若没有,说明理由。

 

 

查看答案和解析>>

已知正方形ABCD,点B与坐标原点O重合,BC、BA分别在x轴和y轴上,对角线BD在射线OM上,点E在y轴上,OA、OE的长分别是2和6,正方形ABCD以每秒2个单位长度的速度沿射线OM(BD始终在射线OM上)方向移动,同时点P从点C以每秒1个单位长度的速度沿折线CD—DA向点A移动,当一点到达终点时,另一点也停止移动,设移动时间为t秒

 1.当0≤t≤2时,直接写出点P的坐标(用t的代数式表示).

2.当四边形EABO是等腰梯形时,①求t的值;②求证:OA=ED

3.是否存在这样的t值,使EF//x轴,若有,求出点P的坐标;若没有,说明理由。

 

 

查看答案和解析>>

如图,直线y=-x+4与两坐标轴分别相交于A、B点,点M是线段AB上任意一点(A、B两点除外),过M分别作MC⊥OA于点C,MD⊥OB于D.
精英家教网
(1)当点M在AB上运动时,你认为四边形OCMD的周长是否发生变化并说明理由;
(2)当点M运动到什么位置时,四边形OCMD的面积有最大值?最大值是多少?
(3)当四边形OCMD为正方形时,将四边形OCMD沿着x轴的正方向移动,设平移的距离为a(0<a<4),正方形OCMD与△AOB重叠部分的面积为S.试求S与a的函数关系式并画出该函数的图象.

查看答案和解析>>

如图,直线y=数学公式x+m(m≠0)交x轴负半轴于点A、交y轴正半轴于点B且AB=5,过点A作直线AC⊥AB交y轴于点C.点E从坐标原点O出发,以0.8个单位/秒的速度沿y轴向上运动;与此同时直线l从与直线AC重合的位置出发,以1个单位/秒的速度沿射线AB方向平行移动.直线l在平移过程中交射线AB于点F、交y轴于点G.设点E离开坐标原点O的时间为t(t≥0)s.
(1)求直线AC的解析式;
(2)直线l在平移过程中,请直接写出△BOF为等腰三角形时点F的坐标;
(3)直线l在平移过程中,设点E到直线l的距离为d,求d与t的函数关系.

查看答案和解析>>


同步练习册答案