(3)若以C为圆心.CQ为半径作⊙C.以P为圆心.以PA的长为半径作⊙P.当⊙C与⊙P外切时.试判断四边形PADQ是什么四边形.并说明理由.解: 查看更多

 

题目列表(包括答案和解析)

如图,在平面直角坐标系中,M为x轴正半轴上的一点,⊙M与x轴交于A、B两点,与y轴交于C、D两点,若A(-1,0),C点的坐标为(0,
3
)

精英家教网
(1)求M点的坐标;
(2)如图,P为
BC
上的一个动点,CQ平分∠PCD.当P点运动时,线段AQ的长度是否改变?若不变,请求其值;若改变,请求出其变化范围;
精英家教网
(3)如图,以A为圆心AC为半径作⊙A,P为⊙A上不同于C、D的一个动点,直线PC交⊙M于点Q,K为PQ的中点,当P点运动时,现给出两个结论:①
CK
PQ
的值不变;②线段OK的长度不变.其中有且只有一个结论正确,选择正确的结论证明并求其值.
精英家教网

查看答案和解析>>

如图,在平面直角坐标系中,M为x轴正半轴上的一点,⊙M与x轴交于A、B两点,与y轴交于C、D两点,若A(-1,0),C点的坐标为

(1)求M点的坐标;
(2)如图,P为上的一个动点,CQ平分∠PCD.当P点运动时,线段AQ的长度是否改变?若不变,请求其值;若改变,请求出其变化范围;

(3)如图,以A为圆心AC为半径作⊙A,P为⊙A上不同于C、D的一个动点,直线PC交⊙M于点Q,K为PQ的中点,当P点运动时,现给出两个结论:①的值不变;②线段OK的长度不变.其中有且只有一个结论正确,选择正确的结论证明并求其值.

查看答案和解析>>

如图,在平面直角坐标系中,M为x轴正半轴上的一点,⊙M与x轴交于A、B两点,与y轴交于C、D两点,若A(-1,0),C点的坐标为

(1)求M点的坐标;
(2)如图,P为上的一个动点,CQ平分∠PCD.当P点运动时,线段AQ的长度是否改变?若不变,请求其值;若改变,请求出其变化范围;

(3)如图,以A为圆心AC为半径作⊙A,P为⊙A上不同于C、D的一个动点,直线PC交⊙M于点Q,K为PQ的中点,当P点运动时,现给出两个结论:①的值不变;②线段OK的长度不变.其中有且只有一个结论正确,选择正确的结论证明并求其值.

查看答案和解析>>

如图,在平面直角坐标系中,M为x轴正半轴上的一点,⊙M与x轴交于A、B两点,与y轴交于C、D两点,若A(-1,0),C点的坐标为(0,
3
)


(1)求M点的坐标;
(2)如图,P为
BC
上的一个动点,CQ平分∠PCD.当P点运动时,线段AQ的长度是否改变?若不变,请求其值;若改变,请求出其变化范围;

(3)如图,以A为圆心AC为半径作⊙A,P为⊙A上不同于C、D的一个动点,直线PC交⊙M于点Q,K为PQ的中点,当P点运动时,现给出两个结论:①
CK
PQ
的值不变;②线段OK的长度不变.其中有且只有一个结论正确,选择正确的结论证明并求其值.

查看答案和解析>>

张华与李明在讨论问题:“已知线段a、b,求作Rt△ABC,使∠C=90°,AB=a,AC=b”时,提出了如下的画法:1、画线段AB=a;2、以AB为直径画⊙O;3、以A为圆心,b为半径画圆与⊙O交于点C,连接BC,则△ABC为所求作的三角形.

 

问题1:在张华的画法中,他应用了什么知识得到∠C=90°的?

答:

问题2:已知△ABC中,∠ACB=90°,AC=BC=2,P、Q分别是边AB、BC上的动点,且点P不与A、B重合,点Q不与B、C重合,当CQ的长取不同的值时,

△CPQ是否可能为直角三角形?若可能,请求出CQ的范围;若不能,说明理由.

查看答案和解析>>


同步练习册答案