已知抛物线y=ax
2+bx+c(a≠0)与x轴交于不同的两点A(x
1,0)和B(x
2,0),与y轴的正半轴交于点C.如果x
1、x
2是方程x
2-x-6=0的两个根(x
1<x
2),且点C的坐标为(0,3).
(1)求此抛物线的解析式;
(2)请直接写出直线AC和BC的解析式;
(3)如果P是线段AC上的一个动点(不与点A、C重合),过点P作直线y=m(m为常数),与直线BC交于点Q,则在x轴上是否存在点R,使得以PQ为一腰的△PQR为等腰直角三角形?若存在,求出点R的坐标;若不存在,请说明理由;
(4)设直线y=kx+2k(k>0)与线段OC交于点D,与(1)中的抛物线交于点E,
若S
△CDE=S
△AOE,请直接写出点E的坐标.