25. 某企业信息部进行市场调研发现: 查看更多

 

题目列表(包括答案和解析)

(2011广西崇左,21,10分)(本小题满分10分)目前我市“校园手机”现象越来越受到社会的关注.针对这种现象,市辖区某中学班主任李老师在“统计实习”活动中随机调查了学校若干名家长对“中学生带手机到学校”现象的看法,统计整理并制作了如下的统计图:

(1)求这次调查的家长总数及家长表示“无所谓”的人数,并补全图①;

(2)求图②中表示家长“无所谓”的圆心角的度数;

(3)从这次接受调查的家长中,随机抽查一个,恰好是“不赞成”态度的家长的概率是多少?

 

查看答案和解析>>

(2011广西崇左,22,10分)(本小题满分10分)矩形、菱形、正方形都是平行四边形,但它们都是有特殊条件的平行四边形,正方形不仅是特殊的矩形,也是特殊的菱形.因此,我们可利用矩形、菱形的性质来研究正方形的有关问题.回答下列问题:

(1)将平行四边形、矩形、菱形、正方形填入它们的包含关系的下图中.

(2)要证明一个四边形是正方形,可先证明四边形是矩形,再证明这个矩形的_______相等;或者先证明四边形是菱形,在证明这个菱形有一个角是________ .

(3)某同学根据菱形面积计算公式推导出对角线长为a的正方形面积是S=0.5a2,对此结论,你认为是否正确?若正确,请说明理由;若不正确,请举出一个反例说明.

 

查看答案和解析>>

(本小题满分10分)

某商场试销一种成本为每件60元的服装,经试销发现,销售量(件)与销售单价(元)符合一次函数,且时,时,

(1)求一次函数的表达式;

(2)若该商场获得利润为元,试写出利润与销售单价之间的关系式;

(3)若该商场想获得500元的利润且尽可能地扩大销售量,则销售单价应定为多少元?

(4)销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?

 

查看答案和解析>>

(本小题满分10分)
某工厂计划为震区生产两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套型桌椅(一桌两椅)需木料,一套型桌椅(一桌三椅)需木料,工厂现有库存木料
【小题1】(1)有多少种生产方案?
【小题2】(2)现要把生产的全部桌椅运往震区,已知每套型桌椅的生产成本为100元,运费2元;每套型桌椅的生产成本为120元,运费4元,求总费用(元)与生产型桌椅(套)之间的关系式,并确定总费用最少的方案和最少的总费用.(总费用生产成本运费)
【小题3】(3)按(2)的方案计算,有没有剩余木料?如果有,请直接写出用剩余木料再生产以上两种型号的桌椅,最多还可以为多少名学生提供桌椅;如果没有,请说明理由.

查看答案和解析>>

(本小题满分10分)如图1,点C将线段AB分成两部分,如果AB : AC=AC : BC,那么称点C为线段的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线将一个面积为S的图形分成两部分,这两部分的面积分别为S1: S2,如果S : S1= S1: S2,,那么称直线为该图形的黄金分割线.

(1)研究小组猜想:在△ABC中,若点D为AB边上的黄金分割点(如图2),则直线CD是△ABC的黄金分割线.你认为对吗?为什么?

(2)请你说明:三角形的中线是否也是该三角形的黄金分割线?

(3)研究小组探究发现:在(1)中,过点C任作AE交AB于E,再过点D作,交 AC于点F,连接EF(如图3),则直线EF是△ABC的黄金分割线.请说明理由.

(4)如图4,点E是ABCD的边AB的黄金分割点,过点E作,交DC于点F,显然直线EF是ABCD的黄金分割线.请你再画一条ABCD的黄金分割线,使它不经过ABCD各边黄金分割点(保留必要的辅助线).

 

查看答案和解析>>


同步练习册答案