②在这一旋转过程中.直角三角板与的重叠部分为四边形.请说明四边形的面积是否发生变化?若发生变化.请说明是如何变化的?若不发生变化.求出其面积, 查看更多

 

题目列表(包括答案和解析)

将一副三角板的直角重合放置,如图1所示,
(1)图1中∠BEC的度数为______
(2)三角板△AOB的位置保持不动,将三角板△COD绕其直角顶点O顺时针方向旋转:
①当旋转至图2所示位置时,恰好OD∥AB,求此时∠AOC的大小;
②若将三角板△COD继续绕O旋转,直至回到图1位置,在这一过程中,是否会存在△COD其中一边能与AB平行?如果存在,请你画出图形,并直接写出相应的∠AOC的大小;如果不存在,请说明理由.

查看答案和解析>>

在Rt△ACB中,∠C=90°,AC=BC,一直角三角板的直角顶角O在AB边的中点上,这块三角板绕O点旋转,两条直角边始终与AC、BC边分别相交于E、F,连接EF,则在运动过程中,△OEF与△ABC的关系是(  )
A.一定相似B.当E是AC中点时相似
C.不一定相似D.无法判断

查看答案和解析>>

28、如图①是一副三角板,其中∠B=∠E=90°,∠A=∠C=45°,∠F=30°,AC=EF=2.把两个三角板ABC和DEF叠放在一起(如图②),且使三角板DEF的直角顶点E与三角板ABC的斜边中点O重合,DE和OC重合.现将三角板DEF绕O点顺时针旋转(旋转角α满足条件:0°<α<90°),四边形BGEH是旋转过程中两三角板的重叠部分(如图③).
(1)当旋转角度为45°时,EG和AB之间的数量关系为
AB=2EG

(2)当DF经过三角板ABC的顶点B,求旋转角α的度数.
(3)在三角板DEF绕O点旋转的过程中,在DF上是否存在一点P,使得∠APC=90°,若存在,请利用直尺和圆规在DF上画出这个点,并说明理由,若不存在,请说明理由.
(4)在射线EF上取一点M,过M作DF的平行线交射线ED于点N(如图④),若直线MN上始终存在两个点P、Q,使得∠APC=∠AQC=90°,求EM的取值范围.

查看答案和解析>>

如图①是一副三角板,其中∠B=∠E=90°,∠A=∠C=45°,∠F=30°,AC=EF=2.把两个三角板ABC和DEF叠放在一起(如图②),且使三角板DEF的直角顶点E与三角板ABC的斜边中点O重合,DE和OC重合.现将三角板DEF绕O点顺时针旋转(旋转角α满足条件:0°<α<90°),四边形BGEH是旋转过程中两三角板的重叠部分(如图③).
(1)当旋转角度为45°时,EG和AB之间的数量关系为______.
(2)当DF经过三角板ABC的顶点B,求旋转角α的度数.
(3)在三角板DEF绕O点旋转的过程中,在DF上是否存在一点P,使得∠APC=90°,若存在,请利用直尺和圆规在DF上画出这个点,并说明理由,若不存在,请说明理由.
(4)在射线EF上取一点M,过M作DF的平行线交射线ED于点N(如图④),若直线MN上始终存在两个点P、Q,使得∠APC=∠AQC=90°,求EM的取值范围.

查看答案和解析>>

如图①是一副三角板,其中∠B=∠E=90°,∠A=∠C=45°,∠F=30°,AC=EF=2.把两个三角板ABC和DEF叠放在一起(如图②),且使三角板DEF的直角顶点E与三角板ABC的斜边中点O重合,DE和OC重合.现将三角板DEF绕O点顺时针旋转(旋转角α满足条件:0°<α<90°),四边形BGEH是旋转过程中两三角板的重叠部分(如图③).
(1)当旋转角度为45°时,EG和AB之间的数量关系为______.
(2)当DF经过三角板ABC的顶点B,求旋转角α的度数.
(3)在三角板DEF绕O点旋转的过程中,在DF上是否存在一点P,使得∠APC=90°,若存在,请利用直尺和圆规在DF上画出这个点,并说明理由,若不存在,请说明理由.
(4)在射线EF上取一点M,过M作DF的平行线交射线ED于点N(如图④),若直线MN上始终存在两个点P、Q,使得∠APC=∠AQC=90°,求EM的取值范围.

查看答案和解析>>


同步练习册答案