A...比较可得. 查看更多

 

题目列表(包括答案和解析)

利用指数函数在同一坐标系中的图象比较大小可得0.70.8
0.80.7

查看答案和解析>>

下面结论错误 的序号是
①②③
①②③

①比较2n与2(n+1),n∈N*的大小时,根据n=1,2,3时,2<4,4<6,8=8,可得2n≤2(n+1)对一切n∈N*成立;
②由“(a•b)c=a(b•c)”(a,b,c∈R)类比可得“(
a
b
)•
c
=
a
•(
b
c
)
”;
③复数z满足z•
.
z
=1
,则|z-2+i|的最小值为
5

查看答案和解析>>

某工厂有一段旧墙长14m,现准备利用这段旧墙为一面建造平面图形为矩形,面积为126m2的厂房,工程条件是:①建1m新墙的费用为a元;=2 ②修1m旧墙的费用为
a
4
元;=3 ③拆去1m的旧墙,用可得的建材建1m的新墙的费用为
a
2
元,经讨论有两种方案:
(1)利用旧墙一段x m(0<x<14)为矩形一边;
(2)矩形厂房利用旧墙的一面边长x≥14;
问如何利用旧墙建墙费用最省?试比较(1)(2)两种方案哪个更好.

查看答案和解析>>

已知展开式
sinx
x
=1-
x2
3!
+
x4
5!
-
x6
7!
+…对x∈R且x≠0恒成立,方程
sinx
x
=0有无究多个根:±π,±2π,…±nπ,…,则1-
x2
3!
+
x4
5!
-
x6
7!
+…=(1-
x2
π2
)(1-
x2
22π2
)…(1-
x2
n2π2
)
…,比较两边x2的系数可以推得1+
1
22
+
1
32
+…+
1
n2
+…=
π2
6
.设代数方程1-a1x2+a2x4-…+(-1)nanx2n=0有2n个不同的根:±x1,±x2,…±xn,类比上述方法可得a1=
1
x
2
1
+
1
x
2
2
+…+
1
x
2
n
1
x
2
1
+
1
x
2
2
+…+
1
x
2
n
.(用x1,x2,…,xn表示)

查看答案和解析>>

设代数方程a0-a1x2+a2x4-…+(-1)nanx2n=0有2n个不同的根±x1,±x2,…,±xn,则a0-a1x2+a2x4-…+(-1)nanx2n=a0(1-
x2
x
2
1
)(1-
x2
x
2
2
)•…•(1-
x2
x
2
n
)
,比较两边x2的系数得a1=
a0(
1
x
2
1
+
1
x
2
2
+…+
1
x
2
n
)
a0(
1
x
2
1
+
1
x
2
2
+…+
1
x
2
n
)
(用a0•x1•x2•…•xn表示);若已知展开式
sinx
x
=1-
x2
3!
+
x4
5!
-
x6
7!
+…
对x∈R,x≠0成立,则由于
sinx
x
=0
有无穷多个根:±π,±2π,…,+±nπ,…,于是1-
x2
3!
+
x4
5!
-
x6
7!
+…=(1-
x2
π2
)(1-
x2
22π2
)•…•(1-
x2
n2π2
)•…
,利用上述结论可得1+
1
22
+
1
32
+…+
1
n2
+…
=
π2
6
π2
6

查看答案和解析>>


同步练习册答案