5.如图.△ABC为等边三角形.过点B做BD⊥BC.过点A做AD⊥BD.垂足分别为B.D.已知等边三角形的周长为m.则AD长为 查看更多

 

题目列表(包括答案和解析)

如图,△ABC为等边三角形,过点B做BD⊥BC,过点A做AD⊥BD,垂足分别为B、D,已知等边三角形的周长为m,则AD长为(   )

A.m        B.m         C.m       D.m

查看答案和解析>>

如图,D是等边三角形ABC的边BC上一点,将△ABD绕点A旋转,使得旋转后点B的对应点为C.

(1)在图中作出旋转后的图形.

(2)小明是这样做的:过C作BA的平行线l,在l上取CE=BD,连接AE,则△ACE即为旋转后的图形.你能说说小明这样做的道理吗?

 

查看答案和解析>>

在平面内,先将一个多边形以点O为位似中心放大或缩小,使所得多边形与原多边形对应线段的比为k,并且原多边形上的任一点P,它的对应点在线段OP或其延长线上;接着将所得多边形以点O为旋转中心,逆时针旋转一个角度,这种经过和旋转的图形变换叫做旋转相似变换,记为O(k,),其中点O叫做旋转相似中心,k叫做相似比,叫做旋转角.

(1)填空:

①如图1,将△ABC以点A为旋转相似中心,放大为原来的2倍,再逆时针旋转60°,得到△ADE,这个旋转相似变换记为A(________________);

②如图2,△ABC是边长为1 cm的等边三角形,将它作旋转相似变换A(,90°),得到△ADE,则线段BD的长为________cm;

(2)如图3,分别以锐角三角形ABC的三边AB,BC,CA为边向外作正方形ADEB,BFGC,CHIA,点O1,O2,O3分别是这三个正方形的对角线交点,试分别利用△AO1O2与△ABI,△CIB与△CAO2之间的关系,运用旋转相似变换的知识说明线段O1O2与AO2之间的关系.

查看答案和解析>>

在平面内,先将一个多边形以点O为位似中心放大或缩小,使所得多边形与原多边形对应线段的比为k,并且原多边形上的任一点P,它的对应点在线段OP或其延长线上;接着将所得多边形以点O为旋转中心,逆时针旋转一个角度θ,这种经过和旋转的图形变换叫做旋转相似变换,记为O(k,θ),其中点O叫做旋转相似中心,k叫做相似比,θ叫做旋转角.

(1)

填空:

①如图1,将△ABC以点A为旋转相似中心,放大为原来的2倍,再逆时针旋转60°,得到△ADE,这个旋转相似变换记为A(________,________);

②如图2,△ABC是边长为1 cm的等边三角形,将它作旋转相似变换,得到△ADE,则线段BD的长为________cm;

(2)

如图3,分别以锐角三角形ABC的三边AB,BC,CA为边向外作正方形ADEB,BFGC,CHIA,点O1,O2,O3分别是这三个正方形的对角线交点,试分别利用△AO1O2与△ABI,△CIB与△CAO2之间的关系,运用旋转相似变换的知识说明线段O1O2与AO2之间的关系.

查看答案和解析>>

(1)自主阅读:如图1,AD∥BC,连接AB、AC、BD、CD,则S△ABC=S△BCD
证明:分别过点A和D,作AF⊥BC,DE⊥BC
由AD∥BC,可得AF=DE.
又因为S△ABC=
1
2
×BC×AF,S△BCD=
1
2
×
BC×DE
所以S△ABC=S△BCD
由此我们可以得到以下的结论:像图1这样,
同底等高的两三角形面积相等
同底等高的两三角形面积相等

(2)结论证明:如果一条直线(线段)把一个平面图形的面积分成相等的两部分,我们把这条直线(线段)称为这个平面图形的一条面积等分线(段),如,平行四变形的一条对角线就是平形四边形的一条面积等分线段.
①如图2,梯形ABCD中AB∥DC,连接AC,过点B作BE∥AC,交DC延长线于点E,连接点A和DE的中点P,则AP即为梯形ABCD的面积等分线段,请你写出这个结论成立的理由:
②如图3,四边形ABCD中,AB与CD不平行,S△ADC>S△ABC,过点A能否做出四边形ABCD的面积等分线(段)?若能,请画出面积等分线(用钢笔或圆珠笔画图,不用写作法),不要证明

查看答案和解析>>


同步练习册答案