将图形绕坐标原点顺时针旋转得图形.称为作1次变换. 查看更多

 

题目列表(包括答案和解析)

如图,将矩形OABC置于平面直角坐标系xOy中,A(数学公式,0),C(0,2).
(1)抛物线y=-x2+bx+c经过点B、C,求该抛物线的解析式;
(2)将矩形OABC绕原点顺时针旋转一个角度α(0°<α<90°),在旋转过程中,当矩形的顶点落在(1)中的抛物线的对称轴上时,求此时这个顶点的坐标;
(3)如图(2),将矩形OABC绕原点顺时针旋转一个角度θ(0°<θ<180°),将得到矩形OA′B′C′,设A′C′的中点为点E,连接CE,当θ=______°时,线段CE的长度最大,最大值为______.

查看答案和解析>>

如图,将矩形OABC置于平面直角坐标系xOy中,A(,0),C(0,2).
(1)抛物线y=-x2+bx+c经过点B、C,求该抛物线的解析式;
(2)将矩形OABC绕原点顺时针旋转一个角度α(0°<α<90°),在旋转过程中,当矩形的顶点落在(1)中的抛物线的对称轴上时,求此时这个顶点的坐标;
(3)如图(2),将矩形OABC绕原点顺时针旋转一个角度θ(0°<θ<180°),将得到矩形OA′B′C′,设A′C′的中点为点E,连接CE,当θ=______°时,线段CE的长度最大,最大值为______.

查看答案和解析>>

23、在平面直角坐标系中,O为坐标原点.
(1)已知点A(3,1),连接OA,作如下探究:
探究一:平移线段OA,使点O落在点B.设点A落在点C,若点B的坐标为(1,2),请在图1中作出BC,点C的坐标是
(4,4)

探究二:将线段OA绕点O逆时针旋转90度,设点A落在点D.则点D的坐标是
(-1,3)
;.

(2)已知四点O(0,0),A (a,b),C,B(c,d),顺次连接O,A,C,B.
①若所得到的四边形为平行四边形,则点C的坐标是
(a+c,b+d)

②若所得到的四边形是正方形,请直接写出a,b,c,d应满足的关系式.

查看答案和解析>>

在平面直角坐标系中,如图1,将个边长为1的正方形并排组成矩形OABC,相邻两边OA和OC分别落在x轴和y轴的正半轴上,设抛物线y=ax2+bx+c(a<0)过矩形顶点B、C。
 
(1)当n=1时,如果=-1,试求b的值;
(2)当n=2时,如图2,在矩形OABC上方作一边长为1的正方形EFMN,使EF在线段CB上,如果M,N两点也在抛物线上,求出此时抛物线的解析式;
(3)将矩形OABC绕点O顺时针旋转,使得点B落到轴的正半轴上,如果该抛物线同时经过原点O。
①试求当n=3时a的值;
②直接写出a关于n的关系式。

查看答案和解析>>

在平面直角坐标系中,如图1,将个边长为1的正方形并排组成矩形OABC, 相邻两边OAOC分别落在轴和轴的正半轴上, 设抛物线<0)过矩形顶点BC.

(1)当n=1时,如果=-1,试求b的值;

(2)当n=2时,如图2,在矩形OABC上方作一边长为1的正方形EFMN使EF在线段CB上,如果MN两点也在抛物线上,求出此时抛物线的解析式;

(3)将矩形OABC绕点O顺时针旋转,使得点B落到轴的正半轴上,如果该抛物线同时经过原点O.①试求当n=3时a的值;

②直接写出关于的关系式.

查看答案和解析>>


同步练习册答案