(3)M为抛物线上的一个动点.F为抛物线的焦点.P(1.3)为定点.求MP+MF的最小值.九.解答题 查看更多

 

题目列表(包括答案和解析)

抛物线y=
12
(x+1)2-2

(1)设此抛物线与x轴交点为A、B(A在B的左边),请你求出A、B两点的坐标;
(2)有一条直线y=x-1,试利用图象法求出该直线与抛物线的交点坐标;
(3)P是抛物线上的一个动点,问是否存在一点P,使S△ABP=4,若存在,则有几个这样的点P,并写出它们的坐标.

查看答案和解析>>

抛物线y=a(x+6)2-3与x轴相交于A,B两点,与y轴相交于C,D为抛物线的顶点,直线DE⊥x轴,垂足为E,AE2=3DE.
(1)求这个抛物线的解析式;
(2)P为直线DE上的一动点,以PC为斜边构造直角三角形,使直角顶点落在x轴上.若在x轴上的直角顶点只有一个时,求点P的坐标;
(3)M为抛物线上的一动点,过M作直线MN⊥DM,交直线DE于N,当M点在抛物线的第二象限的部分上运动时,是否存在使点E三等分线段DN的情况?若存在,请求出所有符合条件的M的坐标;若不存在,请说明理由.
精英家教网精英家教网

查看答案和解析>>

抛物线y=
1
6
x2+bx+c
与x轴交于A,B两点,其中A点坐标为A(2,0),与y轴交于点C(0,2).
(1)求抛物线的解析式;
(2)点Q(8,m)在抛物线y=
1
6
x2+bx+c
上,点P为此抛物线对称轴上一个动点,求PQ+PB的最小值;
(3)以点M(4,0)为圆心、2为半径,在x轴下方作半圆,CE是过点C的半圆的切线,E为切点,求OE所在直线的解析式.

查看答案和解析>>

抛物线对称轴为直线x=4,且过点O(0,0),B(-2,-10),A是抛物线与x轴另一个交点.
(1)求二次函数的解析式;
(2)如图,点C从O点出发,沿x轴以每秒钟一个单位的速度运动,矩形CDEF内接于抛物线,C、D在x轴上,E、F在抛物线上,运动时间t(0<t<4)为何值时,内接矩形CDEF的周长最长?并求周长的最大值;
(3)在(2)中内接矩形CDEF的周长取得最大的条件下,x轴上是否存在点P使△精英家教网PEF为直角三角形(P为直角顶点)?若存在,请求P点坐标;若不存在,说明理由.

查看答案和解析>>

抛物线y=ax2-2ax+b(a>0)交x轴于A,B两点,交y轴于C;且满足OA•OB-OC=0,若C(0,-3)
(1)求这个抛物线的解析式;
(2)若抛物线的顶点为M,将此抛物线顶点沿直线y=-x-3平移,平移后的抛物线与x轴交于A′、B′两点  若2≤A′B′≤6,试求出点M的横坐标的取值范围;
(3)过点C的直线y=
3
4t
x-3与x轴交于点Q,点P是线段BC上的一个动点,过P作PH⊥OB于点H.若PB=
2
t,且0<t<1.依点P的变化,是否存在t的值,使以P、H、Q为顶点的三角形与△COQ相似?若存在,求出所有t的值;若不存在,说明理由.
精英家教网

查看答案和解析>>


同步练习册答案