12.平方得9的数是 ,立方得的数是 . 查看更多

 

题目列表(包括答案和解析)

平方得16的数是(     );立方得﹣64的数是(     )。

查看答案和解析>>

数学课堂上,徐老师出示一道试题:
如图1所示,在正三角形ABC中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠ACP的平分线上一点,若∠AMN=60°,求证:AM=MN。
(1)经过思考,小明展示了一种正确的证明过程,请你将证明过程补充完整,
证明:在AB上截取EA=MC,连结EM,得△AEM,
∵∠1=180°-∠AMB-∠AMN,∠2=180°-∠AMB-∠B,∠AMN=∠B=60°,
∴∠1=∠2,
又CN平分∠ACP,∠4=∠ACP=60°,
∴∠MCN=∠3+∠4=120°…………①
又∵BA=BC,EA=MC,
∴BA-EA=BC-MC,即BE=BM,
∴△BEM为等边三角形,
∴∠6=60°,
∴∠5=180°-∠6=120°………②
∴由①②得∠MCN=∠5,
在△AEM和△MCN中,
∵____________________,
∴△AEM≌△MCN (ASA),
∴AM=MN;
(2)若将试题中的“正三角形ABC”改为“正方形A1B1C1D1”(如图2),N1是∠D1C1P1的平分线上一点,则当∠A1M1N1=90°时,结论A1M1=M1N1,是否还成立?(直接写出答案,不需要证明)
(3) 若将题中的“正三角形ABC”改为“正多边形AnBnCnDn…Xn”,请你猜想:当∠AnMnNn=_____°时,结论AnMn=MnNn仍然成立?(直接写出答案,不需要证明)

查看答案和解析>>

在8×8的正方形网格中建立如图所示的平面直角坐标系,已知A(2,4),B(4,2),C是第一象限内的一个格点,点C与线段AB组成一个以AB为底,且腰长为无理数的等腰三角形。
(1)填空:点C的坐标是_____________,△ABC的面积是__________; 
(2)将△ABC绕点C旋转180°得到△A1B1C,连接AB1、BA1,试判断四边形AB1A1B是何种特殊四边形,请说明理由;
(3)请探究:在x轴上是否存在这样的点P,使四边形ABOP的面积等于△ABC面积的2倍?若存在,请直接写出点P的坐标(不必写出解答过程);若不存在,请说明理由。

查看答案和解析>>

 在8×8的正方形网格中建立如图所示的平面直角坐标系,已知A(24)B(42)。点C是第一象限内的一个格点,由点C与线段AB组成一个以AB为底,且腰长为无理数的等腰三角形。

(1)画出△ABC,点C的坐标是              △ABC的面积是            

(2)△ABC绕点C旋转180°得到△A1B1C,连结AB1BA1,试判断四边形AB1A1B是何种特殊四边形,请说明理由;

 


查看答案和解析>>

如图所示,在等腰梯形ABCD中,AB∥CD,已知AB=6, BC=2,∠DAB=45°,以AB所在直线为x轴,A为坐标原点,建立直角坐标系,将等腰梯形ABCD绕A点按顺时针方向旋转90°得到等腰梯形OEFG(O、E、F、G分别是A、B、C、D旋转后的对应点) (如图所示);
(1)在直线DC上是否存在一点P,使△EFP为等腰三角形?若存在,写出P点的坐标,若不存在,请说明理由;
(2)将等腰梯形ABCD沿x轴的正半轴平行移动,设移动后OA′= x(O<x≤6),等腰梯形A′B′C′D′与等腰梯形OEFG重叠部分的面积为y,求y与x之间的函数关系式。

查看答案和解析>>


同步练习册答案