24.在△ABC中.AB=AC=2.∠A=90°.O为BC的中点.动点E在AB边上自由移动.动点F在AC边上自由移动.(1)点E.F移动的过程中.△OEF是否能够成为∠EOF=45°的等腰三角形?若能.请指出△OEF为等腰三角形时动点E.F的位置,若不能.请说明理由.(2)当∠EOF=45°时.设BE=x,CF=y.求出y与x之间的函数关系式.并写出x的取值范围.中的条件时.若以O为圆心的圆与AB相切.试探索直线EF与⊙O的位置关系.并证明你的结论. 查看更多

 

题目列表(包括答案和解析)

(本题满分12分)提出问题:如图,有一块分布均匀的等腰三角形蛋糕(,且),在蛋糕的边缘均匀分布着巧克力,小明和小华决定只切一刀将这块蛋糕平分(要求分得的蛋糕和巧克力质量都一样).

背景介绍:这条分割直线即平分了三角形的面积,又平分了三角形的周长,我们称这条线为三角  形的“等分积周线”.

尝试解决:

  (1)小明很快就想到了一条分割直线,而且用尺规作图作出.请你帮小明在图1中画出这条“等分积周线”,从而平分蛋糕.

 

 

 

 

 

 

 

 

 

(2) 小华觉得小明的方法很好,所以自己模仿着在图1中过点C画了一条直线CDAB于点D.你觉得小华会成功吗?如能成功,说出确定的方法;如不能成功,请说明理由.

(3)通过上面的实践,你一定有了更深刻的认识.请你解决下面的问题:若ABBC=5 cm,AC=6 cm,请你找出△ABC的所有“等分积周线”,并简要的说明确定的方法.

 

 

 

 

查看答案和解析>>

(本题满分12分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙OAB边交于点D,过点D作⊙O的切线,交BC于点E.

1.(1)求证:点E是边BC的中点;(4分)

2.(2)若EC=3,BD=,求⊙O的直径AC的长度;(4分)

3.(3)若以点ODEC为顶点的四边形是正方形,试判断△ABC的形状,并说明理由. (4分)

 

查看答案和解析>>

(本题满分12分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙OAB边交于点D,过点D作⊙O的切线,交BC于点E.

1.(1)求证:点E是边BC的中点;(4分)

2.(2)若EC=3,BD=,求⊙O的直径AC的长度;(4分)

3.(3)若以点ODEC为顶点的四边形是正方形,试判断△ABC的形状,并说明理由. (4分)

 

查看答案和解析>>

(本题满分12分)提出问题:如图,有一块分布均匀的等腰三角形蛋糕(,且),在蛋糕的边缘均匀分布着巧克力,小明和小华决定只切一刀将这块蛋糕平分(要求分得的蛋糕和巧克力质量都一样).
背景介绍:这条分割直线即平分了三角形的面积,又平分了三角形的周长,我们称这条线为三角 形的“等分积周线”.
尝试解决:
 (1)小明很快就想到了一条分割直线,而且用尺规作图作出.请你帮小明在图1中画出这条“等分积周线”,从而平分蛋糕.
(2) 小华觉得小明的方法很好,所以自己模仿着在图1中过点C画了一条直线CDAB于点D.你觉得小华会成功吗?如能成功,说出确定的方法;如不能成功,请说明理由.
(3)通过上面的实践,你一定有了更深刻的认识.请你解决下面的问题:若ABBC=5 cm,AC=6 cm,请你找出△ABC的所有“等分积周线”,并简要的说明确定的方法.

查看答案和解析>>

(本题满分12分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙OAB边交于点D,过点D作⊙O的切线,交BC于点E.

【小题1】(1)求证:点E是边BC的中点;(4分)
【小题2】(2)若EC=3,BD=,求⊙O的直径AC的长度;(4分)
【小题3】(3)若以点ODEC为顶点的四边形是正方形,试判断△ABC的形状,并说明理由. (4分)

查看答案和解析>>


同步练习册答案