问题二:已知矩形的面积为64cm2.设它的长为cm.周长为cm.(1)填写下表并认真观察.然后说明矩形的长与宽有什么关系时.其周长最小? 查看更多

 

题目列表(包括答案和解析)

【问题情境】
已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
【数学模型】
设该矩形的长为x,周长为y,则y与x的函数关系式为y=2(x+
a
x
)(x>0).
【探索研究】
(1)我们可以借鉴以前研究函数的经验,先探索函数y=x+
1
x
(x>0)的图象和性质.精英家教网
①填写下表,画出函数的图象;
x
1
4
1
3
1
2
1 2 3 4
y              
②观察图象,写出该函数两条不同类型的性质;
③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数y=x+
1
x
(x>0)的最小值.

【解决问题】
(2)用上述方法解决“问题情境”中的问题,直接写出答案.

查看答案和解析>>

【问题情境】
已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
【数学模型】
设该矩形的长为x,周长为y,则y与x的函数关系式为y=2(x+)(x>0).
【探索研究】
(1)我们可以借鉴以前研究函数的经验,先探索函数y=x+(x>0)的图象和性质.
①填写下表,画出函数的图象;
x1234
y       
②观察图象,写出该函数两条不同类型的性质;
③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数y=x+(x>0)的最小值.

【解决问题】
(2)用上述方法解决“问题情境”中的问题,直接写出答案.

查看答案和解析>>

(2011•南京)【问题情境】已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
【数学模型】

设该矩形的长为x,周长为y,则y与x的函数关系式为y=2(x+)(x>0).
【探索研究】(1)我们可以借鉴以前研究函数的经验,先探索函数y=x+(x>0)的图象和性质.
①填写下表,画出函数的图象;

x




1
2
3
4

y

 
 
 
 
 
 
 

②观察图象,写出该函数两条不同类型的性质;
③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数y=x+(x>0)的最小值
【解决问题】
(2)用上述方法解决“问题情境”中的问题,直接写出答案.

查看答案和解析>>

【问题情境】
已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
【数学模型】
设该矩形的长为x,周长为y,则y与x的函数关系式为y=2(x+)(x>0).
【探索研究】
(1)我们可以借鉴以前研究函数的经验,先探索函数y=x+(x>0)的图象和性质.
①填写下表,画出函数的图象;
x1234
y       
②观察图象,写出该函数两条不同类型的性质;
③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数y=x+(x>0)的最小值.

【解决问题】
(2)用上述方法解决“问题情境”中的问题,直接写出答案.

查看答案和解析>>

【问题情境】
已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
【数学模型】
设该矩形的长为x,周长为y,则y与x的函数关系式为y=2(x+)(x>0).
【探索研究】
(1)我们可以借鉴以前研究函数的经验,先探索函数y=x+(x>0)的图象和性质.
①填写下表,画出函数的图象;
x1234
y       
②观察图象,写出该函数两条不同类型的性质;
③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数y=x+(x>0)的最小值.

【解决问题】
(2)用上述方法解决“问题情境”中的问题,直接写出答案.

查看答案和解析>>


同步练习册答案