已知则= . 查看更多

 

题目列表(包括答案和解析)

已知则∫-aacosxdx=
1
2
(a>0),则∫0acosxdx=(  )
A、2
B、1
C、
1
2
D、
1
4

查看答案和解析>>

已知则
lim
x→2
x2+ax+b
x2-x-2
=2
,则a+b=
-6
-6

查看答案和解析>>

已知,则的取值范围是_______________.

查看答案和解析>>

已知的最小值是(     ).

   A         B        C 2        D   1

查看答案和解析>>

已知,则等于(   )

A.

B.

C.

D.-

查看答案和解析>>

 

 

一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.

ADBAC    BCABC

※1.A  (1) 大,实数与虚数不能比较大小;(2)两个复数互为共轭复数时其和为实数,但是两个复数的和为实数不一定是共轭复数; 

(3的充要条件为是错误的,因为没有表明是否是实数;

(4)当时,没有纯虚数和它对应

※2.D   ,虚部为

※3.B   ,反之不行,例如为实数不能推出

       ,例如;对于任何都是实数

※4.A  

※5.C 

※6.B 

 

7.C  

8.A  

9.B  

※10.C

 

 

 

二、填空题(每小题5分, 4题共20分)。

※11.  

12.  

13.  

      

※14  记

              

三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.

15(本题 13 分)

解:设,由

是纯虚数,则

16.(本题 13 分)

1)

(2)

(3)

(4)

17(本题 13 分)

解:设,而

18.(本题 13 分)

19.(本题 14 分)

解:首先求出函数的零点:.又易判断出在内,图形在轴下方,在内,图形在轴上方,

所以所求面积为

20.(本题 14 分)

解:(1)设fx)=ax2+bx+c,则f′(x)=2ax+b

又已知f′(x)=2x+2

a=1,b=2.

fx)=x2+2x+c

又方程fx)=0有两个相等实根,

∴判别式Δ=4-4c=0,即c=1.

fx)=x2+2x+1.

(2)依题意,有所求面积=.

(3)依题意,有

,-t3+t2t+=t3t2+t,2t3-6t2+6t-1=0,

∴2(t-1)3=-1,于是t=1-.

 

 

 


同步练习册答案