(1)设图12―2中的矩形ACBD和矩形AEFB的面积分别为S1和S2.则S1 S2(填“> .“= 或“<,(2)如图12―3中的△ABC是锐角三角形.且三边满足BC>AC>AB.按短文中的要求把它补成矩形.那么符合要求的矩形可以画出 个.并在图12―3中把符合要求的矩形画出来. 查看更多

 

题目列表(包括答案和解析)

如图,菱形ABCD的边长为24厘米,∠A=60°,点P从点A出发沿线路AB→BD作匀速运动,点Q从精英家教网点D同时出发沿线路DC→CB→BA作匀速运动.
(1)求BD的长;
(2)已知点P、Q运动的速度分别为4厘米/秒,5厘米/秒,经过12秒后,P、Q分别到达M、N两点,若按角的大小进行分类,请你确定△AMN是哪一类三角形,并说明理由;
(3)设(2)中的点P、Q分别从M、N同时沿原路返回,点P的速度不变,点Q的速度改变为a厘米/秒,经过3秒后,P、Q分别到达E、F两点,若△BEF与(2)中的△AMN相似,试求a的值.

查看答案和解析>>

25、现将连续自然数1至2009按图中的方式排列成一个长方形队列,再用正方形任意框出16个数.

(1)设任意一个这样的正方形框中的最小数为n,请用n的代数式表示该框中的16个数,然后填入右表中相应的空格处,并求出这16个数中的最小数
n
和最大数
n+24
,然后填入右表中相应的空格处,并求出这16个数的和
16(n+12)
.(用n的代数式表示)
(2)在图中,要使一个正方形框出的16个数之和和分别等于832、2000、2008是否可能?若不可能,请说明理由;若可能,请求出该正方形框出的16个数中的最小数和最大数.
(3)计算出该长方形队列中,共可框出多少个这样不同的正方形框.

查看答案和解析>>

下面是2006年12月的日历,仔细观察,你能发现其中有何规律吗?
(1)现任意圈出一竖列上相邻的三个数,设中间的一个为a,则用含a的代数式表示这三个数(从小到大排列)分别是
a-7,a,a+7
a-7,a,a+7

(2)用正方形任意框出4个数,设最小的一个为a,则这4个数的和为
4a+16
4a+16

(3)现将连续自然数1至2008按图中的方式排成一个长方形阵列,用一个正方形框出16个数,如图
①图中框出的这16个数的和为
352
352

②图中要使一个正方形框出的16个数之和分别等于2000,2006,是否可能?若不可能,试说明理由;若有可能,请求出该正方形框出的16个数中的最小数和最大数.

查看答案和解析>>

现将连续自然数1至2009按图中的方式排列成一个长方形队列,再用正方形任意框出16个数。

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1      2      3      4     5      6      7
8          9          10         11         12         13      14
15         16         17         18         19         20      21
22         23         24         25         26         27      28
·        ·        ·        ·        ·        ·     ·
·        ·        ·        ·        ·        ·     ·
·        ·        ·        ·        ·        ·     ·
1996      1997     1998     1999     2000     2001  2002
2003      2004     2005     2006     2007     2008  2009

 
 


(1)设任意一个这样的正方形框中的最小数为,请用的代数式表示该框中的16个数,然后填入右表中相应的空格处,并求出这16个数中的最小数和最大数,然后填入右表中相应的空格处,并求出这16个数的和。(用的代数式表示)
(2)在图中,要使一个正方形框出的16个数之和和分别等于832、2000、2008是否可能?若不可能,请说明理由;若可能,请求出该正方形框出的16个数中的最小数和最大数

查看答案和解析>>

如图,菱形ABCD的边长为24厘米,∠A=60°,点P从点A出发沿线路AB→BD作匀速运动,点Q从点D同时出发沿线路DC→CB→BA作匀速运动.
(1)求BD的长;
(2)已知点P、Q运动的速度分别为4厘米/秒,5厘米/秒,经过12秒后,P、Q分别到达M、N两点,若按角的大小进行分类,请你确定△AMN是哪一类三角形,并说明理由;
(3)设(2)中的点P、Q分别从M、N同时沿原路返回,点P的速度不变,点Q的速度改变为a厘米/秒,经过3秒后,P、Q分别到达E、F两点,若△BEF与(2)中的△AMN相似,试求a的值.

查看答案和解析>>


同步练习册答案