(3)以∆ABC的斜边BC所在的直线为x轴.BC边上的高所在的直线为y轴.建立平面直角坐标系.在边BC上找一点D.使BD=CE.求出D点的坐标.并通过计算验证BD+CE=DE. 查看更多

 

题目列表(包括答案和解析)

如图1,在同一平面内,将两个全等的等腰直角三角形ABCAFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为,若∆ABC固定不动,∆AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),设BE=m,CD=n

(1)请在图1中找出两对相似而不全等的三角形,并选取其中一对证明它们相似;

(2)根据图1,求mn的函数关系式,直接写出自变量n的取值范围;

(3)以∆ABC的斜边BC所在的直线为x轴,BC边上的高所在的直线为y轴,建立平面直角坐标系(如图2). 旋转∆AFG,使得BD=CE,求出D点的坐标,并通过计算验证

(4)在旋转过程中,(3)中的等量关系是否始终成立,若成立,请证明,若不成立,请说明理由.

 

 

查看答案和解析>>

如图1,在同一平面内,将两个全等的等腰直角三角形ABCAFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为2,若∆ABC固定不动,∆AFG绕点A旋转,AFAG与边BC的交点分别为DE(点D不与点B重合,点E不与点C重合),设BE=m,CD=n.

(1)请在图中找出两对相似而不全等的三角形,并选取其中一对进行证明.

(2)求m与n的函数关系式,直接写出自变量n的取值范围.

   (3)以∆ABC的斜边BC所在的直线为x轴,BC边上的高所在的直线为y轴,建立平面直角坐标系(如图2).在边BC上找一点D,使BD=CE,求出D点的坐标,并通过计算验证BDCE=DE.

   (4)在旋转过程中,(3)中的等量关系BDCE=DE是否始终成立,若成立,请证明,若不成立,请说明理由.

 

查看答案和解析>>

精英家教网如图所示,以Rt△ABC的斜边BC为一边在△ABC的同侧作正方形BCEF,设正方形的中心为O,连接AO,如果AB=4,AO=6
2
,那么AC=
 

查看答案和解析>>

如图,以Rt△ABC的斜边BC为一边作正方形BCDE,设正方形的中心为O,连接AO,如果AB=3,AO=2
2
,那么AC的长等于(  )

查看答案和解析>>

精英家教网如图,以Rt△ABC的斜边BC为一边在△ABC的同侧作正方形BCEF,设正方形的中心为O,连接AO,如果AB=4,AO=6
2
,那么AC的长等于(  )
A、12
B、16
C、4
3
D、8
2

查看答案和解析>>


同步练习册答案