(2)设点E(.)是抛物线上一动点.且位于第四象限.四边形OEAF是以OA为对角线的平行四边形.求平行四边形OEAF的面积S与之间的函数关系式.并写出自变量的取值范围,①当平行四边形OEAF的面积为24时.请判断平行四边形OEAF是否为菱形?②是否存在点E.使平行四边形OEAF为正方形?若存在.求出点E的坐标,若不存在.请说明理由. 查看更多

 

题目列表(包括答案和解析)

已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正精英家教网半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x2-10x+16=0的两个根,且抛物线的对称轴是直线x=-2.
(1)求A、B、C三点的坐标;
(2)求此抛物线的表达式;
(3)连接AC、BC,若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;
(4)在(3)的基础上试说明S是否存在最大值?若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.

查看答案和解析>>

(1)如图1,抛物线C1:y=ax2+bx+c的开口向下,顶点为D点,与y轴交于点,且经过A(-1,0),B(3,0)两点,若△ABD的面积为8.
①求抛物线C1的解析式;
②Q是抛物线C1上的一个动点,当△QBC的内心落在x轴上时,求此时点Q的坐标;
(2)如图2,将(1)中的抛物线C1向右平移t(t>0)个单位长度,得到抛物线C2,顶点为E,抛物线C1、C2相交于P点,设△PDE的面积为S,判断
St3
是否为定值?请说明理由.
精英家教网

查看答案和解析>>

已知抛物线y=ax2-2ax+c-1的顶点在直线y=-
83
x+8
上,与x轴相交于B(α,0)、C(β,0)两点,其中α<β,且α22=10.
(1)求这个抛物线的解析式;
(2)设这个抛物线与y轴的交点为P,H是线段BC上的一个动点,过H作HK∥PB,交PC于K,连接PH,记线段BH的长为t,△PHK的面积为S,试将S表示成t的函数;
(3)求S的最大值,以及S取最大值时过H、K两点的直线的解析式.

查看答案和解析>>

已知抛物线y=ax2+bx+c(a≠0)经过点B(2,0)和点C(0,8),且它的对称轴是直精英家教网线x=-2.
(1)求抛物线与x轴的另一交点A的坐标;
(2)求此抛物线的解析式;
(3)连接AC,BC,若点E是线段AB上的一个动点(与点A,点B)不重合,过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式;
(4)在(3)的基础上试说明S是否存在最大值?若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.

查看答案和解析>>

已知抛物线y=x2+(2n-1)x+n2-1(n为常数).
(1)当该抛物线经过坐标原点,并且顶点在第四象限时,求出它所对应的函数关系式;
(2)设A是(1)所确定的抛物线上位于x轴下方、且在对称轴左侧的一个动点,过A作x轴的平行线,交抛物线于另一点D,再作AB⊥x轴于B,DC⊥x轴于C.
①当BC=1时,求矩形ABCD的周长;
②试问矩形ABCD的周长是否存在最大值?如果存在,请求出这个最大值,并指出此时A点的坐标.如果不存在,请说明理由.

查看答案和解析>>


同步练习册答案