25.如图:已知:∠BAG与∠AGD互补.∠l=∠2 试问:∠E与∠F相等吗?为什么? 查看更多

 

题目列表(包括答案和解析)

如图,已知六边形ABCDEF与六边形GHIJKL相似,点A、B、C、D、E和F的对应点分别是点G、H、I、J、K和L.若它们的相似比为2:1,则下列结论中,正确的是(  )

查看答案和解析>>

精英家教网如图,已知正方形ABCD与正方形EFGH的边长分别是4
2
2
2
,它们的中心O1,O2都在直线l上,AD∥l,EG在直线l上,l与DC相交于点M,ME=7-2
2
,当正方形EFGH沿直线l以每秒1个单位的速度向左平移时,正方形ABCD也绕O1以每秒45°顺时针方向开始旋转,在运动变化过程中,它们的形状和大小都不改变.
(1)在开始运动前,O1O2=
 

(2)当两个正方形按照各自的运动方式同时运动3秒时,正方形ABCD停止旋转,这时AE=
 
,O1O2=
 

(3)当正方形ABCD停止旋转后,正方形EFGH继续向左平移的时间为x秒,两正方形重叠部分的面积为y,求y与x之间的函数表达式.

查看答案和解析>>

如图,已知直线AB与CD相交于点O,OE、OF分别是∠BOD、∠AOD的平分线.
(1)∠DOE的补角是
∠AOE或∠COE
∠AOE或∠COE

(2)若∠BOD=62°,求∠AOE和∠DOF的度数;
(3)判断射线OE与OF之间有怎样的位置关系?并说明理由.

查看答案和解析>>

(2007•临夏州)[(1)-(3),10分]如图,已知等边△ABC和点P,设点P到△ABC三边AB、AC、BC(或其延长线)的距离分别为h1、h2、h3,△ABC的高为h.
在图(1)中,点P是边BC的中点,此时h3=0,可得结论:h1+h2+h3=h.
在图(2)--(5)中,点P分别在线段MC上、MC延长线上、△ABC内、△ABC外.
(1)请探究:图(2)--(5)中,h1、h2、h3、h之间的关系;(直接写出结论)
(2)证明图(2)所得结论;
(3)证明图(4)所得结论.
(4)在图(6)中,若四边形RBCS是等腰梯形,∠B=∠C=60°,RS=n,BC=m,点P在梯形内,且点P到四边BR、RS、SC、CB的距离分别是h1、h2、h3、h4,桥形的高为h,则h1、h2、h3、h4、h之间的关系为:
m(h1+h2+h3)-n(h1+h3-h4)=(m+n)h
m(h1+h2+h3)-n(h1+h3-h4)=(m+n)h
;图(4)与图(6)中的等式有何关系?

查看答案和解析>>

27、如图,已知RT△ABC与RT△DEF不相似,其中∠C、∠F为直角,能否分别将这两个三角形各分割成两个三角形,使△ABC所分的每个三角形与△DEF所分成的每个三角形分别对应相似?若能,请设计出一种分割方案.

查看答案和解析>>


同步练习册答案