如图.将三角形ABC.以边AB所在直线为轴旋转一周形成一个纺锤体.AB=13cm.AD=3cm.BD=10cm.CD=4cm. 查看更多

 

题目列表(包括答案和解析)

如图,△ABC中,AB=BC=2,∠ABC=45°,CD⊥AB,BE⊥AC,垂足分别为D、E,BE与CD相交于点F,H是BC边的中点,连接DH与BE相交于点G.以点H为原点,BC所在直线为x轴建立如图所示的平面直角坐标系.
(1)一条抛物线经过D、B、C三点,求这条抛物线的解析式;
(2)猜想:线段BG与CE之间存在数量关系BG=数学公式CE吗?若存在,请证明;若不存在,请说明理由;
(3)将△DHC进行平移、旋转、翻折(无任何限制),使它与△BDH拼成特殊四边形(面积不变).则(1)中抛物线上是否存在点P,使它成为所拼特殊四边形异于B、H、D三点的顶点?若存在,请求出P点坐标;若不存在,请说明理由.

查看答案和解析>>

如图,△ABC中,AB=BC=2,∠ABC=45°,CD⊥AB,BE⊥AC,垂足分别为D、E,BE与CD相交于点F,H是BC边的中点,连接DH与BE相交于点G.以点H为原点,BC所在直线为x轴建立如图所示的平面直角坐标系.
(1)一条抛物线经过D、B、C三点,求这条抛物线的解析式;
(2)猜想:线段BG与CE之间存在数量关系BG=CE吗?若存在,请证明;若不存在,请说明理由;
(3)将△DHC进行平移、旋转、翻折(无任何限制),使它与△BDH拼成特殊四边形(面积不变).则(1)中抛物线上是否存在点P,使它成为所拼特殊四边形异于B、H、D三点的顶点?若存在,请求出P点坐标;若不存在,请说明理由.

查看答案和解析>>

如图,关于直线l对称的两个圆的半径都为1,等边三角形ABC,LMN的顶点分别在两圆上,AB⊥l,MN∥l,将l左侧的图形进行平移、旋转或翻折变换(以下所述“变换”均值这3种变换之一),可以与l右侧的图形重合.
(1)通过两次变换,不难实现上述重合的目的.例如,将l左侧图先绕圆心O1,按逆时针方向旋转______度,再沿l翻折,就可与右侧的图形重合;又如,将l左侧图形先向右平移2个单位,再绕圆心按顺时针方向旋转______度,就与右侧图形重合;
(2)能否将l左侧图形只进行一次变换,就可使它与l右侧图形重合?如果能,请说明变换过程;如果不能,请你设计一种“将l左侧图形先沿着过点O1的某直线翻折,再向右适当平移”(两次变换)即可与右侧图形重合的方案.(画出该直线并予以说明)

查看答案和解析>>

如图,关于直线l对称的两个圆的半径都为1,等边三角形ABC,LMN的顶点分别在两圆上,AB⊥l,MNl,将l左侧的图形进行平移、旋转或翻折变换(以下所述“变换”均值这3种变换之一),可以与l右侧的图形重合.
(1)通过两次变换,不难实现上述重合的目的.例如,将l左侧图先绕圆心O1,按逆时针方向旋转______度,再沿l翻折,就可与右侧的图形重合;又如,将l左侧图形先向右平移2个单位,再绕圆心按顺时针方向旋转______度,就与右侧图形重合;
(2)能否将l左侧图形只进行一次变换,就可使它与l右侧图形重合?如果能,请说明变换过程;如果不能,请你设计一种“将l左侧图形先沿着过点O1的某直线翻折,再向右适当平移”(两次变换)即可与右侧图形重合的方案.(画出该直线并予以说明)

精英家教网

查看答案和解析>>

23、如图是9×7的正方形点阵,其水平方向和竖直方向相邻的两格点间的长度都是1个单位,以这些点为顶点的三角形称为格点三角形.请通过画图分析、探究回答下列问题:
(1)请在图中画出以AB为边且面积为3的一个格点三角形(记为△ABC);
(2)将你所画的三角形绕着点A沿逆时针方向旋转90°,画出旋转后的图形(记为
△AB′C′).

查看答案和解析>>


同步练习册答案