已知如下图:矩形ABCD的边BC在X轴上.E为对角线BD的中点.点B.D的坐标分别为B.反比例函数y= 的图象经过A点.(1)写出点A和点E的坐标, (2) 求反比例函数的解析式,(3)判断点E是否在这个函数的图象上 查看更多

 

题目列表(包括答案和解析)

如图,已知矩形ABCD,AB=
3
,BC=3
,在BC上取两点E,F(E在F左边),以EF为边作等边精英家教网三角形PEF,使顶点P在AD上,PE,PF分别交AC于点G,H.
(1)求△PEF的边长;
(2)在不添加辅助线的情况下,当F与C不重合时,先直接判断△APH与△CFH是如下关系中的哪一种:然后证明你的判断.
①△APH与△CFH全等;
②△APH与△CFH相似;
③△APH与△CFH成中心对称;
④△APH与△CFH成轴对称;
(3)若△PEF的边EF在线段BC上移动.试猜想:PH与BE有何数量关系?并证明你猜想的结论.

查看答案和解析>>

已知如图所示,点(1,3)在函数的图象上,矩形ABCD的边BCx轴上,E是对角线BD的中点,函数的图象又经过AE两点,点E的横坐标为m,解答下列各题:

(1)求k的值;

(2)求点C的横坐标(用m表示);

(3)当∠ABD=45°时,求m的值.

查看答案和解析>>

如图,在平面直角坐标系xOy中,已知直线l1:y=x与直线l2:y= -x+6相交于点M,直线l2与x轴相交于点N.
(1)求M,N的坐标.
(2)矩形ABCD中,已知AB=1,BC=2,边AB在x轴上,矩形ABCD沿x轴自左向右以每秒1个单位长度的速度移动,设矩形ABCD与△OMN的重叠部分的面积为S,移动的时间为t(从点B与点O重合时开始计时,到点A与点N重合时计时开始结束).直接写出S与自变量t之间的函数关系式(不需要给出解答过程).
(3)在(2)的条件下,当t为何值时,S的值最大?并求出最大值.

查看答案和解析>>

如图,在平面直角坐标系xOy中,已知直线l1:y=x与直线l2:y= -x+6相交于点M,直线l2与x轴相交于点N.

(1)求M,N的坐标.

(2)矩形ABCD中,已知AB=1,BC=2,边AB在x轴上,矩形ABCD沿x轴自左向右以每秒1个单位长度的速度移动,设矩形ABCD与△OMN的重叠部分的面积为S,移动的时间为t(从点B与点O重合时开始计时,到点A与点N重合时计时开始结束).直接写出S与自变量t之间的函数关系式(不需要给出解答过程).

(3)在(2)的条件下,当t为何值时,S的值最大?并求出最大值.

查看答案和解析>>

如图,在平面直角坐标系xOy中,已知直线l1:y=x与直线l2:y=-x+6相交于点M,直线l2与x轴相交于点N.
(1)求M,N的坐标.
(2)矩形ABCD中,已知AB=1,BC=2,边AB在x轴上,矩形ABCD沿x轴自左向右以每秒1个单位长度的速度移动,设矩形ABCD与△OMN的重叠部分的面积为S,移动的时间为t(从点B与点O重合时开始计时,到点A与点N重合时计时开始结束).直接写出S与自变量t之间的函数关系式(不需要给出解答过程).
(3)在(2)的条件下,当t为何值时,S的值最大?并求出最大值.

查看答案和解析>>


同步练习册答案