18.如图.C.E分别在直线AB.DF上.小华想知道∠ACE和∠DEC是否互补.但他又没有带量角器.只带了一副三角板.于是他想了这样一个办法:连结CF.找出CF的中点O.然后连结EO并延长EO和直线AB相交于点曰.经过测量.他发现EO=BO.因此他得出结论:∠ACE和∠DEC互补.而且他还发现BC=EF.以下是他的想法.请你填上理由. 查看更多

 

题目列表(包括答案和解析)

(本题满分12分)

 已知菱形ABCD的边长为1.∠ADC=60°,等边△AEF两边分别交边DC、CB于点E、F。

1.(1)特殊发现:如图1,若点E、F分别是边DC、CB的中点.求证:菱形ABCD对角线AC、BD交点O即为等边△AEF的外心;

2.(2)若点E、F始终分别在边DC、CB上移动.记等边△AEF的外心为点P.

①猜想验证:如图2.猜想△AEF的外心P落在哪一直线上,并加以证明;

②拓展运用:如图3,当△AEF面积最小时,过点P任作一直线分别交边DA于点M,交边DC的延长线于点N,试判断是否为定值.若是.请求出该定值;若不是.请说明理由。

 

查看答案和解析>>

(本题满分10分)

        、两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往城,乙车驶往城,甲车在行驶过程中速度始终不变.甲车距城高速公路入口处的距离(千米)与行驶时间(时)之间的关系如图.

1.(1)求关于的表达式;

2.(2)已知乙车以60千米/时的速度匀速行驶,设行驶过程中,相遇前两车相距的路程为(千米).请直接写出关于的表达式;

3.(3)当乙车按(2)中的状态行驶与甲车相遇后,速度随即改为(千米/时)并保持匀速行驶,结果比甲车晚40分钟到达终点,求乙车变化后的速度.在下图中画出乙车离开城高速公路入口处的距离(千米)与行驶时间(时)之间的函数图象.

 

查看答案和解析>>

(本题满分l0分)在如下图所示的平面直角坐标系中画出下面各点:A(0,3);B(1,-3);C(3,-5);D(-3,-5);E(3,5);F(5,7);并解答下列各题

(1)A点到原点O的距离是________________________。

(2)将点C沿轴的负方向平移6个单位,它与点_______________重合。

(3)连接CE,则直线CE与Y轴是什么关系?

(4)点F分别到轴的距离是多少?

 

查看答案和解析>>

(本题满分12分)在平面直角坐标系中,一次函数的图象与坐标轴围成的三角形,叫做此一次函数的坐标三角形.例如,图中的一次函数的图象与x,y轴分别交于点A,B,则△OAB为此函数的坐标三角形.

(1)求函数yx+3的坐标三角形的三条边长;    

(2)若函数yxbb为常数)的坐标三角形周长为16,求此三角形面积.

 

查看答案和解析>>

(本题满分12分)在平面直角坐标系中,一次函数的图象与坐标轴围成的三角形,叫做此一次函数的坐标三角形.例如,图中的一次函数的图象与x,y轴分别交于点A,B,则△OAB为此函数的坐标三角形.

(1)求函数yx+3的坐标三角形的三条边长;    

(2)若函数yxbb为常数)的坐标三角形周长为16,求此三角形面积.

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>


同步练习册答案