2.描点:以表中各对对应值为坐标.在坐标系中画出各点. 查看更多

 

题目列表(包括答案和解析)

(1)根据y=2x(x≥0)填写下表:

(2)分别以每个x的值为横坐标,以对应的y值为纵坐标,在直角坐标系中描出各点;

(3)按照横坐标由小到大的顺序,把所描出的各点用平滑的曲线依次连接起来.

查看答案和解析>>

我市某工艺厂为配合奥运会,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:

销售单价x(元/件)

……

30

40

50

60

……

每天销售量y(件)

……

500

400

300

200

……

(1)把上表中xy的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想yx的函数关系,并求出函数关系式;

(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价-成本总价)

(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?

分析 (1)从表格中的数据我们可以看出当x增加10时,对应y的值减小100,所以yx之间可能是一次函数的关系,我们可以根据图象发现这些点在一条直线上,所以yx之间是一次函数的关系,然后设出一次函数关系式,求出其关系式.

(2)利用二次函数的知识求最大值.

查看答案和解析>>

水产公司有一种海产品共2104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:
第1天第2天第3天第4天第5天第6天第7天第8天
售价x(元/千克)400300250240______150125120
销售量y(千克)3040485060______96100
(1)以上表中的x、y分别为横坐标、纵坐标建立直角坐标系(在草稿纸上画草图即可),在坐标系内描出x、y各组对应值作为点的坐标,用光滑曲线连接起来,观察所得到的图象,猜测这种海产品的每天销售量y(千克)与销售价格x(元/千克)之间的函数关系式,并求出这个函数关系式.[注:现设定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.]
(2)在试销8天后,水产公司决定在20天内每天按同一售价把这批海产品全部售出.请你帮助公司核定这20天内每天的售价是多少?
(3)在按(2)中定价继续销售15天后,公司发现剩余的这些海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务?

查看答案和解析>>

(2010•石家庄模拟)水产公司有一种海产品共2104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:
第1天 第2天 第3天 第4天 第5天 第6天 第7天 第8天
售价x(元/千克) 400 300 250 240
200
200
150 125 120
销售量y(千克) 30 40 48 50 60
80
80
96 100
(1)以上表中的x、y分别为横坐标、纵坐标建立直角坐标系(在草稿纸上画草图即可),在坐标系内描出x、y各组对应值作为点的坐标,用光滑曲线连接起来,观察所得到的图象,猜测这种海产品的每天销售量y(千克)与销售价格x(元/千克)之间的函数关系式,并求出这个函数关系式.[注:现设定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.]
(2)在试销8天后,水产公司决定在20天内每天按同一售价把这批海产品全部售出.请你帮助公司核定这20天内每天的售价是多少?
(3)在按(2)中定价继续销售15天后,公司发现剩余的这些海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务?

查看答案和解析>>

如图,李老师设计了一个探究杠杆平衡条件的实验:在一个自制类似天平的仪器的左边固定托盘A中放置一个重物,在右边的活动托盘B(可左右移动)中放置一定质量的砝码,使得仪器左右平衡,改变活动托盘B与点O的距离x(cm),观察活动托盘B中砝码的质量y(g)的变化情况.实验数据记录如下表:

(1)把上表中(x,y)的各组对应值作为点的坐标,在坐标系中描出相应的点,用平滑曲线连接这些点;

(2)观察所画的图象,猜测y与x之间的函数关系,求出函数关系式并加以验证;

(3)当砝码的质量为24 g时,活动托盘B与点O的距离是多少cm?

(4)当活动托盘B往左移动时,应往活动托盘B中添加还是减少砝码?

查看答案和解析>>


同步练习册答案