14.如图3是四张全等的长方形纸片拼成的图形.请利用图中的空白部分面积的不同表示方法.写出一个关于a.b的恒等式 . 查看更多

 

题目列表(包括答案和解析)

如图是四张全等的长方形纸片拼成的图形,请利用图中的空白部分面积的不同表示方法,写出一个关于a、b的恒等式         

查看答案和解析>>

27、将图1,将一张直角三角形纸片ABC折叠,使点A与点C重合,这时DE为折痕,△CBE为等腰三角形;再继续将纸片沿△CBE的对称轴EF折叠,这时得到了两个完全重合的矩形(其中一个是原直角三角形的内接矩形,另一个是拼合成的无缝隙、无重叠的矩形),我们称这样两个矩形为“叠加矩形”.

(1)如图2,正方形网格中的△ABC能折叠成“叠加矩形”吗?如果能,请在图2中画出折痕;
(2)如图3,在正方形网格中,以给定的BC为一边,画出一个斜三角形ABC,使其顶点A在格点上,且△ABC折成的“叠加矩形”为正方形;
(3)如果一个三角形所折成的“叠加矩形”为正方形,那么它必须满足的条件是
三角形一边长与该边上的高相等

(4)如果一个四边形一定能折成“叠加矩形”,那么它必须满足的条件是
对角线互相垂直

查看答案和解析>>

24、小刚同学动手剪了如图①所示的正方形与长方形纸片若干张.
观察与操作:
(1)他拼成如图②所示的正方形,根据四个小纸片的面积之和等于大正方形的面积,得到:a2+2ab+b2=(a+b)2,验证了完全平方公式;即:多项式  a2+2ab+b2 分解因式后,其结果表示正方形的长(a+b)与宽(a+b)两个整式的积.
(2)当他拼成如图③所示的矩形,由面积相等又得到:a2+3ab+2b2=(a+2b)(a+b),即:多项式 a2+3ab+2b2 分解因式后,其结果表示矩形的长(a+2b)与宽(a+b)两个整式的积.
问题解决:
(1)请你依照小刚的方法,利用拼图分解因式:a2+4ab+3b2.(画图说明,并写出其结果)
(2)试猜想面积是2a2+5ab+3b2的矩形,其长与宽分别是多少?(画图说明,并写出其结果)

查看答案和解析>>

小刚同学动手剪了如图①所示的正方形与长方形纸片若干张.观察与操作:
精英家教网
(1)他拼成如图②所示的正方形,根据四个小纸片的面积之和等于大正方形的面积,得到:(a+b)2=a2+2ab+b2,验证了完全平方公式;即多项式a2+2ab+b2分解因式后,其结果表示正方形的长(a+b)与宽(a+b)两个整式的积.
(2)当他拼成如图③所示的矩形,由面积相等又得到:a2+3ab+2b2=(a+2b)(a+b),即:多项式a2+3ab+2b2分解因式后,其结果表示矩形的长(a+2b)与宽(a+b)两个因式的积.利用上述纸片,
解决问题:
①请你依照小刚的方法,利用拼图把a2+4ab+3b2分解因式(画出图形,并写出其结果)
②探索:面积是2a2+5ab+3b2的矩形其长与宽分别是多少?(画出画形,并写出其结果)
③利用图形面积解释代数恒等式(a-b)2=(a+b)2-4ab(画图,并简要说明)

查看答案和解析>>

小刚同学动手剪了如图①所示的正方形与长方形纸片若干张.观察与操作:

(1)他拼成如图②所示的正方形,根据四个小纸片的面积之和等于大正方形的面积,得到:a2+2ab+b2=(a+b)2,验证了完全平方公式;即:多项式  a2+2ab+b2分解因式后,其结果表示正方形的长(a+b)与宽(a+b)两个整式的积.
(2)当他拼成如图③所示的矩形,由面积相等又得到:a2+3ab+2b2=(a+2b)(a+b),即:多项式 a2+3ab+2b2分解因式后,其结果表示矩形的长(a+2b)与宽(a+b)两个整式的积.
问题解决:
(1)请你依照小刚的方法,利用拼图写出恒等式a2+4ab+3b2.(画图说明,并写出其结果)
(2)试猜想面积是2a2+5ab+3b2的矩形,其长与宽分别是多少?(画图说明,并写出其结果)

查看答案和解析>>


同步练习册答案