如下图.△ABC和△BDE是等边三角形.点A.B.D在一条直线上.并且AB=BD.由一个三角形变换到另一个三角形 A.仅能由平移得到 B.能由平移得到.也能由旋转得到 C.仅能由旋转得到 D.不能由平移得到.也不能由旋转得到 查看更多

 

题目列表(包括答案和解析)

如图所示,已知△ABC和△BDE都是等边三角形,且A、B、D三点共线.下列结论:①AE=CD;②BF=BG;③HB平分∠AHD;④∠AHC=60°,⑤△BFG是等边三角形;⑥FG∥AD.其中正确的有


  1. A.
    3个
  2. B.
    4个
  3. C.
    5个
  4. D.
    6个

查看答案和解析>>

探究问题
(1)方法感悟:
一班同学到野外上数学活动课,为测量池塘两端A、B的距离,设计了如下方案:
方案(Ⅰ)如图1,先在平地上取一个可直接到达A、B的点C,连接AC、BC,并分别延长AC至D,BC至E,使DC=AC,EC=BC,最后测出DE的距离即为AB的长;感悟解题方法,并完成下列填空:
解:在如图所示的两个三角形△DEC和△ABC中:DC=AC,∠
ACB
ACB
=∠
DCE
DCE
(对顶角相等),EC=BC,∴△DEC≌△ABC
(SAS)
(SAS)
,∴DE=AB(全等三角形对应边相等),即DE的距离即为AB的长.
(2)方法迁移:
方案(Ⅱ)如图2,先过B点作AB的垂线BF,再在BF上取C、D两点使BC=CD,接着过D作BD的垂线DE,交AC的延长线于E,则测出DE的长即为AB的距离.请你说明理由.  
(3)问题拓展:
方案(Ⅱ)中作BF⊥AB,ED⊥BF的目的是
作∠ABC=∠EDC=90°
作∠ABC=∠EDC=90°
;若仅满足∠ABD=∠BDE≠90°,方案(Ⅱ)是否成立?
成立
成立

查看答案和解析>>

(1)填空:把下面的推理过程补充完整,并在括号内注明理由.

已知:如图1,BC∥EF,AB=DE,BC=EF,试说明∠C=∠F.
解:∵BC∥EF(已知)
∴∠ABC=
∠E
∠E
两直线平行,同位角相等
两直线平行,同位角相等

在△ABC与△DEF中

∴△ABC≌△DEF(
SAS
SAS

∴∠C=∠F(
全等三角形的对应角相等
全等三角形的对应角相等

(2)如图2,A、B、E三点在同一条直线上,△ABC和△BDE都是等边三角形,AD交BC于F,CE分别交BD、AD于G、H,请在图中找出三对全等三角形.

查看答案和解析>>

(1)如图(1)两个圆中,⊙O1与⊙O2相交于A、B,过B点的直线交两圆于C、D,已知⊙O1与⊙O2的半径分别为6和8,求证:AD:AC的比值为定值;
(2)如图(2),D为线段AB延长线上的一点,△ABC与△BDE都是等边三角形,连接CE并延长,△ABC的外接圆⊙O交CF于M,请解答下列问题:
①求证:BE切⊙O于B;
②若CM=2,MF=6,求⊙O的半径;
③过D作DG∥BE交EF于G,过G作GH∥DE交DF于H,设△ABC、△BDE、△DHG的面积分别为S1、S2、S3,试探究S1、S2、S3之间的关系.

查看答案和解析>>

(1)填空:把下面的推理过程补充完整,并在括号内注明理由.

已知:如图1,BC∥EF,AB=DE,BC=EF,试说明∠C=∠F.
解:∵BC∥EF(已知)
∴∠ABC=________(________)
在△ABC与△DEF中

∴△ABC≌△DEF(________)
∴∠C=∠F(________)
(2)如图2,A、B、E三点在同一条直线上,△ABC和△BDE都是等边三角形,AD交BC于F,CE分别交BD、AD于G、H,请在图中找出三对全等三角形.

查看答案和解析>>


同步练习册答案