图(14) (1)用b表示点E的坐标, (2)求实数b的取值范围, 查看更多

 

题目列表(包括答案和解析)

在平面直角坐标系xOy中,一次函数y=-x+3的图象与x轴交于点A,与y轴交于点B,动点P从点B出发沿BA向终点A运动,同时动点Q从点O出发沿OB向点B运动,到达点B后立刻以原来的速度沿BO返回.点P,Q运动速度均为每秒1个单位长度,当点P到达点A时停止运动,点Q也同时停止.连结PQ,设运动时间为t(t>0)秒.
(1)求点P的坐标(用含t的代数式表示);
(2)当点Q从点O向点B运动时(未到达点B),是否存在实数t,使得△BPQ的面积大于17若存在,请求出t的取值范围;若不存在,请说明理由;
(3)伴随着P,Q两点的运动,线段PQ的垂直平分线为直线l.是否存在t的值,使得直线l经过点O?若存在,请求出所有t的值;若不存在,请说明理由.

查看答案和解析>>

在平面直角坐标系xOy中,一次函数y=-x+3的图象与x轴交于点A,与y轴交于点B,动点P从点B出发沿BA向终点A运动,同时动点Q从点O出发沿OB向点B运动,到达点B后立刻以原来的速度沿BO返回.点P,Q运动速度均为每秒1个单位长度,当点P到达点A时停止运动,点Q也同时停止.连结PQ,设运动时间为t(t>0)秒.
(1)求点P的坐标(用含t的代数式表示);
(2)当点Q从点O向点B运动时(未到达点B),是否存在实数t,使得△BPQ的面积大于17若存在,请求出t的取值范围;若不存在,请说明理由;
(3)伴随着P,Q两点的运动,线段PQ的垂直平分线为直线l.是否存在t的值,使得直线l经过点O?若存在,请求出所有t的值;若不存在,请说明理由.

查看答案和解析>>

如图,抛物线的图象与轴交于两点,与轴交于点,其中点的坐标为;直线与抛物线交于点,与轴交于点,且

(1)用表示点的坐标;

(2)求实数的取值范围;

(3)请问的面积是否有最大值?若有,求出这个最大值;若没有,请说明理由.

查看答案和解析>>

如图,在平面直角坐标系中,直线y=-
34
x+6交x轴于点A,交y轴于点B.点P,点Q同时从原点出发作匀速运动,点P沿x轴正方向运动,点Q沿OB→BA方向运动,并同时到达点A.点P运动的速度为1厘米/秒.
(1)求点Q运动的速度;
(2)当点Q运动到线段BA上时,设点P运动的时间为x(秒),△POQ的面积为y(平方厘米),那么用x的代数式表示AQ=
 
,并求y与x的函数关系式;
(3)若将(2)中所得函数的自变量x的取值范围扩大到任意实数后,其函数图象上是否存在点M,使得点M与该函数图象和x轴的两个交点所组成的三角形面积等于△AOB的面积?若存在,求出点M的坐标;若不存在,请说明精英家教网理由.

查看答案和解析>>

如图,在平面直角坐标系xOy中,矩形OABC的边OA、OC分别在y轴和x轴的正半轴上,且长分别为m、4m(m>0),D为边AB的中点,一抛物线l经过点A、D及点M(-1,-1-m).
(1)求抛物线l的解析式(用含m的式子表示);
(2)把△OAD沿直线OD折叠后点A落在点A′处,连接OA′并延长与线段BC的延长线交于点E,若抛物线l与线段CE相交,求实数m的取值范围;
(3)在满足(2)的条件下,求出抛物线l顶点P到达最高位置时的坐标.

查看答案和解析>>


同步练习册答案