(2)其中恰有1人击中目标的概率, 查看更多

 

题目列表(包括答案和解析)

某人射击一次击中目标的概率是
23
,假设每次射击是否击中目标相互之间没有影响.若此人射击3次,得分有如下规定:
(1)若有且仅有1次击中目标,则得1分;
(2)若恰好击中目标两次时,如果这两次为连续击中,则得3分,若不是连续击中则得2分;
(3)若恰好3次击中目标,则得4分;
(4)若未击中目标则不得分.记三次射击后此人得分为X分,求得分X的分布列及其数学期望E(X).

查看答案和解析>>

某人射击一次击中目标的概率是
2
3
,假设每次射击是否击中目标相互之间没有影响.若此人射击3次,得分有如下规定:
(1)若有且仅有1次击中目标,则得1分;
(2)若恰好击中目标两次时,如果这两次为连续击中,则得3分,若不是连续击中则得2分;
(3)若恰好3次击中目标,则得4分;
(4)若未击中目标则不得分.记三次射击后此人得分为X分,求得分X的分布列及其数学期望E(X).

查看答案和解析>>

某人射击一次击中目标的概率是,假设每次射击是否击中目标相互之间没有影响.若此人射击3次,得分有如下规定:
(1)若有且仅有1次击中目标,则得1分;
(2)若恰好击中目标两次时,如果这两次为连续击中,则得3分,若不是连续击中则得2分;
(3)若恰好3次击中目标,则得4分;
(4)若未击中目标则不得分.记三次射击后此人得分为X分,求得分X的分布列及其数学期望E(X).

查看答案和解析>>

甲、乙两人各射击1次,击中目标的概率分别是.假设两人是否击中目标相互之间没有影响;每人各次射击是否击中目标相互之间也没有影响.

(1)求甲射击4次,至少有1次未击中目标的概率;

(2)求两个人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率;

(3)假设某人连续2次未击中目标,则中止其射击.问:乙恰好射击5次后,被中止射击的概率是多少?

查看答案和解析>>

甲、乙两人各射击一次,击中目标的概率分别是.假设两人射击是否击中目标相互之间没有影响;每人各次射击是否击中目标相互之间也没有影响.

(1)求甲射击4次,至少有1次未击中目标的概率;

(2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率;

(3)假设某人连续2次未击中目标,则中止其射击.问:乙恰好射击5次后,被中止射击的概率是多少?

查看答案和解析>>

 

一、DCABB   DDCBC   AB

二、13.  192    14.   640     15.   4     16.   

17.

(1)     …5分

(2)由已知及(1)知     

学科网(Zxxk.Com)学科网(Zxxk.Com)正弦定理得:

   ……………………10分

18.由题设及等比数列的性质得 

又                 ②

由①②得  或            …………………4分

    或                     …………………6分

                      …………………8分

时,        …………………10分

时,………………12分

19.略(见课本B例1)

20.解:

(1)在正四棱柱中,因为

所以           

又             

连接于点,连接,则,所以

所以是由截面与底面所成二面角的平面角,即

学科网(Zxxk.Com)

所以                 .....................4分

(2)由题设知是正四棱柱.

因为                  

所以                   

又                     

所以是异面直线之间的距离。

因为,而是截面与平面的交线,

所以                     

                   

即异面直线之间的距离为

(3)由题知

                        

因为                    

所以是三棱锥的高,

在正方形中,分别是的中点,则

                             

所以                    

即三棱锥的体积是.

21.(1)解:,由此得切线的方程为

         ………………………4分

(2)切线方程令,得

当且仅当时等号成立。………………………9分

②若,则又由

                   ………………………12分

22.(1)由题可得,设  

 

  

   又

    点P的坐标为   ……………………3分

 

(2)由题意知,量直线的斜率必存在,设PB的斜率为

则PB的直线方程为:由  得

,显然1是该方程的根

,依题意设故可得A点的横坐标

 

                   ……………………7分

(3)设AB的方程为,带入并整理得

               

                  

   …………………(

                 

点P到直线AB的距离

当且仅当,即时取“=”号(满足条件

的面积的最大值为2                      ………………………12分

 

 

 

 


同步练习册答案