(2)求证直线AB的斜率k为定值, (3)求△PAB面积的最大值. 查看更多

 

题目列表(包括答案和解析)

精英家教网已知椭圆两焦点F1、F2在y轴上,短轴长为2
2
,离心率为
2
2
,P是椭圆在第一象限弧上一点,且
PF1
PF2
=1
,过P作关于直线F1P对称的两条直线PA、PB分别交椭圆于A、B两点.
(1)求P点坐标;
(2)求证直线AB的斜率为定值.

查看答案和解析>>

已知椭圆两焦点分别为F1F2P是椭圆在第一象限弧上一点,并满足,过P作倾斜角互补的两条直线PAPB分别交椭圆于AB两点.   

(1)求P点坐标;                               

(2)求证直线AB的斜率为定值;   

(3)求△PAB面积的最大值。

                                                        

查看答案和解析>>

已知椭圆两焦点分别为F1、F2、P是椭圆在第一象限弧上一点,并满足,过P作倾斜角互补的两条直线PA、PB分别交椭圆于A、B两点

   (1)求P点坐标;

   (2)求证直线AB的斜率为定值;

   (3)求△PAB面积的最大值。

 

 

 

查看答案和解析>>

(本小题满分12分)

已知 F1、F2是椭圆的两焦点,是椭圆在第一象限弧上一点,且满足=1.过点P作倾斜角互补的两条直线PA、PB分别交椭圆于A、B两点.

(1)求P点坐标;

(2)求证直线AB的斜率为定值;

(3)求△PAB面积的最大值.

 

 

 

 

查看答案和解析>>

已知椭圆两焦点F1、F2在y轴上,短轴长为,离心率为,P是椭圆在第一象限弧上一点,且,过P作关于直线F1P对称的两条直线PA、PB分别交椭圆于A、B两点.
(1)求P点坐标;
(2)求证直线AB的斜率为定值.

查看答案和解析>>

 

一、DCABB   DDCBC   AB

二、13.  192    14.   640     15.   4     16.   

17.

(1)     …5分

(2)由已知及(1)知     

学科网(Zxxk.Com)学科网(Zxxk.Com)正弦定理得:

   ……………………10分

18.由题设及等比数列的性质得 

又                 ②

由①②得  或            …………………4分

    或                     …………………6分

                      …………………8分

时,        …………………10分

时,………………12分

19.略(见课本B例1)

20.解:

(1)在正四棱柱中,因为

所以           

又             

连接于点,连接,则,所以

所以是由截面与底面所成二面角的平面角,即

学科网(Zxxk.Com)

所以                 .....................4分

(2)由题设知是正四棱柱.

因为                  

所以                   

又                     

所以是异面直线之间的距离。

因为,而是截面与平面的交线,

所以                     

                   

即异面直线之间的距离为

(3)由题知

                        

因为                    

所以是三棱锥的高,

在正方形中,分别是的中点,则

                             

所以                    

即三棱锥的体积是.

21.(1)解:,由此得切线的方程为

         ………………………4分

(2)切线方程令,得

当且仅当时等号成立。………………………9分

②若,则又由

                   ………………………12分

22.(1)由题可得,设  

 

  

   又

    点P的坐标为   ……………………3分

 

(2)由题意知,量直线的斜率必存在,设PB的斜率为

则PB的直线方程为:由  得

,显然1是该方程的根

,依题意设故可得A点的横坐标

 

                   ……………………7分

(3)设AB的方程为,带入并整理得

               

                  

   …………………(

                 

点P到直线AB的距离

当且仅当,即时取“=”号(满足条件

的面积的最大值为2                      ………………………12分

 

 

 

 


同步练习册答案