(2)是否存在实数.使得抛物线上有一点E.满足以D.N.E为顶点的三角形与△AOB相似?若不存在.说明理由,若存在.求所有符合条件的抛物线的解析式.同时探索所求得的抛物线上是否还有符合条件的E点.并进一步探索对符合条件的每一个E点.直线NE与直线AB的交点G是否总满足.写出探索过程. 查看更多

 

题目列表(包括答案和解析)

如图,已知抛物线C:y=-
1
2
x2+
1
2
x+3与x轴交于点A、B两点,过定点的直线l:y=
1
a
x-2(a≠0)交x轴于点Q.
(1)求证:不论a取何实数(a≠0)抛物线C与直线l总有两个交点;
(2)写出点A、B的坐标:A(
 
)、B(
 
)及点Q的坐标:Q(
 
)(用含a的代数式表示);并依点Q坐标的变化确定:当
 
时(填上a的取值范围),直线l与抛物线C在第一象限内有交点;
(3)设直线l与抛物线C在第一象限内的交点为P,是否存在这样的点P,使得精英家教网∠APB=90°?若存在,求出此时a的值;不存在,请说明理由.

查看答案和解析>>

如图,已知抛物线C:y=-数学公式x2+数学公式x+3与x轴交于点A、B两点,过定点的直线l:y=数学公式x-2(a≠0)交x轴于点Q.
(1)求证:不论a取何实数(a≠0)抛物线C与直线l总有两个交点;
(2)写出点A、B的坐标:A(______)、B(______)及点Q的坐标:Q(______)(用含a的代数式表示);并依点Q坐标的变化确定:当______时(填上a的取值范围),直线l与抛物线C在第一象限内有交点;
(3)设直线l与抛物线C在第一象限内的交点为P,是否存在这样的点P,使得∠APB=90°?若存在,求出此时a的值;不存在,请说明理由.

查看答案和解析>>

(2004•龙岩)如图,已知抛物线C:y=-x2+x+3与x轴交于点A、B两点,过定点的直线l:y=x-2(a≠0)交x轴于点Q.
(1)求证:不论a取何实数(a≠0)抛物线C与直线l总有两个交点;
(2)写出点A、B的坐标:A(______)、B(______)及点Q的坐标:Q(______)(用含a的代数式表示);并依点Q坐标的变化确定:当______时(填上a的取值范围),直线l与抛物线C在第一象限内有交点;
(3)设直线l与抛物线C在第一象限内的交点为P,是否存在这样的点P,使得∠APB=90°?若存在,求出此时a的值;不存在,请说明理由.

查看答案和解析>>

(2004•龙岩)如图,已知抛物线C:y=-x2+x+3与x轴交于点A、B两点,过定点的直线l:y=x-2(a≠0)交x轴于点Q.
(1)求证:不论a取何实数(a≠0)抛物线C与直线l总有两个交点;
(2)写出点A、B的坐标:A(______)、B(______)及点Q的坐标:Q(______)(用含a的代数式表示);并依点Q坐标的变化确定:当______时(填上a的取值范围),直线l与抛物线C在第一象限内有交点;
(3)设直线l与抛物线C在第一象限内的交点为P,是否存在这样的点P,使得∠APB=90°?若存在,求出此时a的值;不存在,请说明理由.

查看答案和解析>>

已知抛物线

(1)试说明:无论m为何实数,该抛物线与x轴总有两个不同的交点;

(2)如图,当该抛物线的对称轴为直线x=3时,抛物线的顶点为点C,直线y=x-1与抛物线交于AB两点,并与它的对称轴交于点D.

①抛物线上是否存在一点P使得四边形ACPD是正方形?若存在,求出点P的坐标;若不存在,说明理由;

②平移直线CD,交直线AB于点M,交抛物线于点N,通过怎样的平移能使得CDMN为顶点的四边形是平行四边形.

查看答案和解析>>


同步练习册答案