24.如下图.点C是半⊙O的半径OB上的动点.作PC⊥AB于C.点D是半圆上位于PC左侧的点.连结BD交线段PC于E.且PD=PE. 查看更多

 

题目列表(包括答案和解析)

如左图,在平面直角坐标系中,二次函数y=ax2+bx+c(a>0)的图象的顶点为D点,与y轴交于C点,与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),OB=OC,tan∠ACO=
13

(1)求这个二次函数的表达式.
(2)经过C、D两点的直线,与x轴交于点E,在该抛物线上是否存在这样的点F,使以点A、C、E、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由.
(3)若平行于x轴的直线与该抛物线交于M、N两点,且以MN为直径的圆与x轴相切,求该圆半径的长度.
(4)如图,若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上一动点,当点P运动到什么位置时,△APG的面积最大?求出此时P点的坐标和△APG的最大面积.
精英家教网

查看答案和解析>>

如图,已知正方形ABCD,点E是边AB的中点,点O是线段AE上的一个动点(不与A、E重合),以O为圆心,OB为半径的圆与边AD相交于点M,过点M作⊙O的切线交DC于点N,连接OM、ON、BM、BN.记△MNO、△AOM、△DMN的面积分别为S1、S2、S3,则下列结论不一定成立的是(  )
A、S1>S2+S3B、△AOM∽△DMNC、∠MBN=45°D、MN=AM+CN

查看答案和解析>>

如图,扇形OAB的半径为4,圆心角∠AOB=90°,点C是上异于点A、B的一动点,过点C作CD⊥OB于点D,作CE⊥OA于点E,联结DE,过O点作OF⊥DE于点F,点M为线段OD上一动点,联结MF,过点F作NF⊥MF,交OA于点N.
(1)当时,求的值;
(2)设OM=x,ON=y,当时,求y关于x 的函数解析式,并写出它的定义域;
(3)在(2)的条件下,联结CF,当△ECF与△OFN相似时,求OD的长.

查看答案和解析>>

如图,扇形OAB的半径为4,圆心角AOB=90°,点C是上异于点A、B的一动点,过点C作CDOB于点D,作CEOA于点E,联结DE,过O点作OFDE于点F,点M为线段OD上一动点,联结MF,过点F作NFMF,交OA于点N.

(1)当时,求的值;

(2)设OM=x,ON=y,当时,求y关于x 的函数解析式,并写出它的定义域;

(3)在(2)的条件下,联结CF,当ECF与OFN相似时,求OD的长

 

 

查看答案和解析>>

如图,菱形OABC的顶点O在坐标原点,顶点B在x轴的正半轴上,OA边在直线上,AB边在直线上.
(1)直接写出O、A、B、C的坐标;
(2)在OB上有一动点P,以O为圆心,OP为半径画弧MN,分别交边OA、OC于M、N(M、N可以与A、C重合),作⊙Q与边AB、BC,弧MN都相切,⊙Q分别与边AB、BC相切于点D、E,设⊙Q的半径为r,OP的长为y,求y与r之间的函数关系式,并写出自变量r的取值范围;
(3)以O为圆心、OA为半径做扇形OAC,请问在菱形OABC中,除去扇形OAC后剩余部分内,是否可以截下一个圆,使得它与扇形OAC刚好围成一个圆锥.若可以,求出这个圆的面积,若不可以,说明理由.

查看答案和解析>>


同步练习册答案