23. 如图(7)点A.B.D.E在⊙O上.AE.BD的廷长线交于C.给出下列三个条件:①AB是⊙O的直径,②D是BC的中点,③∠B=∠C.请在上述条件中任意选取两个作为已知条件.第三个作为结论.写出一个你认为正确的命题.并加以证明. 查看更多

 

题目列表(包括答案和解析)

(本题8分)如图,射线PG平分∠EPFO为射线PG上一点,以O为圆心,10为半径作⊙O,分别与∠EPF的两边相交于ABCD,连结OA,此时有OA//PE
(1)求证:AP=AO
(2)若tan∠OPB=,求弦AB的长;
(3)若以图中已标明的点(即PABCDO)构造四边形,则能构成菱形的四个点为 ▲ ,能构成等腰梯形的四个点为 ▲  ▲  ▲ .

查看答案和解析>>

(本题6分)    
如图,梯形ABCD中, DCAB,点EBC的中点,连结AE并延长与DC的延长线相交于点F,连结BFAC.
求证:四边形ABFC是平行四边形;

查看答案和解析>>

(本题12分) 如图,在平面直角坐标系中,二次函数的图象与x轴交于A、B两点, A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方的抛物线上一动点.

(1)求b,c的值.
(2)连结POPC并把△POC沿CO翻折,得到四边形, 那么是否存在点P,使四边形为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.
(3)当点P运动到什么位置时,四边形 ABPC的面积最大,并求出此时P点的坐标和四边形ABPC的最大面积.

查看答案和解析>>

28. (本题12分)如图,一抛物线的顶点A为(2,-1),交x轴于B、C(B左C右)两点,交y轴于点D,且B(1,0),坐标原点为O,

(1)求抛物线解析式.

(2)连接CD、BD,在x轴上确定点E,使以A、C、E为顶点的三角形与△CBD相似,并求出点E的坐标.

(3)若点M(m,1)是抛物线上对称轴右侧的一点,点Q也在抛物线上,点P在x轴上,是否存在以O、M、P、Q为顶点的四边形是平行四边形,若存在,请直接写出点P的坐标;若不存在,请说明理由.

 

查看答案和解析>>

(本题12分)如图,直角坐标系中,以点A(1,0)为圆心画圆,点M(4,4)在⊙A上,直线y=-x+b过点M,分别交x轴、y轴于B、C两点.

1.⑴求⊙A的半径和b的值;

2.⑵判断直线BC与⊙A的位置关系,并说明理由;

3.⑶若点P在⊙A上,点Q是y轴上C点下方的一点,当△PQM为等腰直角三角形时,请直接

写出满足条件的点Q坐标.

 

查看答案和解析>>


同步练习册答案