式②验证: 查看更多

 

题目列表(包括答案和解析)

实验与探究:
(1)在图1,2,3中,已知平行四边形ABCD的三个顶点A,B,D的坐标(如图所示),求出图1,2,3中的第四个顶点C的坐标,已求出图1中顶点C的坐标是(5,2),图2,3中顶点C的坐标分别是
 
 

精英家教网
(2)在图4中,平行四边形ABCD的顶点A,B,D的坐标(如图所示),求出顶点C的坐标(C点坐标用含a,b,c,d,e,f的代数式表示);
精英家教网
归纳与发现:
(3)通过对图1,2,3,4的观察和顶点C的坐标的探究,你会发现:无论平行四边形ABCD处于直角坐标系中哪个位置,当其顶点坐标为A(a,b),B(c,d),C(m,n),D(e,f)(如图4)时,则四个顶点的横坐标a,c,m,e之间的等量关系为
 
;纵坐标b,d,n,f之间的等量关系为
 

(不必证明);运用与推广:
(4)在同一直角坐标系中有抛物线y=x2-(5c-3)x-c和三个点G(-
1
2
c,
5
2
c)
S(
1
2
c,
9
2
c)
,H(2c,0)(其中c>0).问当c为何值时,该抛物线上存在点P,使得以G,S,H,P为顶点的四边形是平行四边形?并求出所有符合条件的P点坐标.

查看答案和解析>>

实验与探究
(1)在图1、图2、图3中,给出平行四边形ABCD的顶点A、B、D的坐标,写出图1、图2、图3中的顶点C的坐标,它们分别是
(5,2)、(e+c,d)
(5,2)、(e+c,d)
(e+c-a,d)
(e+c-a,d)

(2)在图4中,给出平行四边形ABCD的顶点A,B,D的坐标(如图所示),求出顶点C的坐标(C点坐标用含a,b,c,d,e,f的代数式表示);


归纳与发现
(3)通过对图1、图2、图3、图4的观察和顶点C的坐标的探究,你会发现:无论平行四边形ABCD处于直角坐标系中哪个位置,当其顶点C坐标为(m,n)(如图4)时,则四个顶点的横坐标a,c,m,e之间的等量关系为
m=c+e-a
m=c+e-a
;纵坐标b,d,n,f之间的等量关系为
n=d+f-b
n=d+f-b
(不必证明);
运用与推广
(4)在同一直角坐标系中有双曲线y=-
14
x
和三个点G(-
1
2
c,
5
2
c),S(
1
2
c,
9
2
c)
,H(2c,0)(其中c>0).问当c为何值时,该双曲线上存在点P,使得以G,S,H,P为顶点的四边形是平行四边形?并求出所有符合条件的P点坐标.

查看答案和解析>>

实验与探究
(1)在图1、图2、图3中,给出平行四边形ABCD的顶点A、B、D的坐标,写出图1、图2、图3中的顶点C的坐标,它们分别是______,______.
(2)在图4中,给出平行四边形ABCD的顶点A,B,D的坐标(如图所示),求出顶点C的坐标(C点坐标用含a,b,c,d,e,f的代数式表示);


归纳与发现
(3)通过对图1、图2、图3、图4的观察和顶点C的坐标的探究,你会发现:无论平行四边形ABCD处于直角坐标系中哪个位置,当其顶点C坐标为(m,n)(如图4)时,则四个顶点的横坐标a,c,m,e之间的等量关系为______;纵坐标b,d,n,f之间的等量关系为______(不必证明);
运用与推广
(4)在同一直角坐标系中有双曲线数学公式和三个点数学公式,H(2c,0)(其中c>0).问当c为何值时,该双曲线上存在点P,使得以G,S,H,P为顶点的四边形是平行四边形?并求出所有符合条件的P点坐标.

查看答案和解析>>

实验与探究:
(1)在图1,2,3中,已知平行四边形ABCD的三个顶点A,B,D的坐标(如图所示),求出图1,2,3中的第四个顶点C的坐标,已求出图1中顶点C的坐标是(5,2),图2,3中顶点C的坐标分别是______,______;
(2)在图4中,平行四边形ABCD的顶点A,B,D的坐标(如图所示),求出顶点C的坐标(C点坐标用含a,b,c,d,e,f的代数式表示);
归纳与发现:
(3)通过对图1,2,3,4的观察和顶点C的坐标的探究,你会发现:无论平行四边形ABCD处于直角坐标系中哪个位置,当其顶点坐标为A(a,b),B(c,d),C(m,n),D(e,f)(如图4)时,则四个顶点的横坐标a,c,m,e之间的等量关系为______;纵坐标b,d,n,f之间的等量关系为______(不必证明);
运用与推广:
(4)在同一直角坐标系中有抛物线y=x2-(5c-3)x-c和三个点,H(2c,0)(其中c>0),问当c为何值时,该抛物线上存在点P,使得以G,S,H,P为顶点的四边形是平行四边形?并求出所有符合条件的P点坐标。

查看答案和解析>>

实验与探究:
(1)在图1,2,3中,已知平行四边形ABCD的三个顶点A,B,D的坐标(如图所示),求出图1,2,3中的第四个顶点C的坐标,已求出图1中顶点C的坐标是(5,2),图2,3中顶点C的坐标分别是______,______;

(2)在图4中,平行四边形ABCD的顶点A,B,D的坐标(如图所示),求出顶点C的坐标(C点坐标用含a,b,c,d,e,f的代数式表示);

归纳与发现:
(3)通过对图1,2,3,4的观察和顶点C的坐标的探究,你会发现:无论平行四边形ABCD处于直角坐标系中哪个位置,当其顶点坐标为A(a,b),B(c,d),C(m,n),D(e,f)(如图4)时,则四个顶点的横坐标a,c,m,e之间的等量关系为______;纵坐标b,d,n,f之间的等量关系为______
(不必证明);运用与推广:
(4)在同一直角坐标系中有抛物线y=x2-(5c-3)x-c和三个点,H(2c,0)(其中c>0).问当c为何值时,该抛物线上存在点P,使得以G,S,H,P为顶点的四边形是平行四边形?并求出所有符合条件的P点坐标.

查看答案和解析>>


同步练习册答案